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Abstract

Cognitive science research suggests the noisy workplaces common in low and middle
income countries can impair workers’ cognitive functions. However, whether this trans-
lates into lower earnings for workers depends on the importance of these functions for
productivity and whether workers understand these effects. I use two randomized ex-
periments in Nairobi, Kenya to answer these questions. First, I randomize exposure
to engine noise during a textile training course at a government training facility. An
increase of 10 dB reduces productivity by approximately 5%. In order to study what
mechanism drives this effect, I then randomize engine noise during tests of cognitive
function and a placebo effort task. The same noise change impairs cognitive function
but not effort task performance. Finally, in both experiments, I examine whether in-
dividuals appreciate the impact of noise on their performance by eliciting participants’
willingness to pay for quiet working conditions while randomly varying whether they
are compensated based on their performance. Individuals’ willingness to pay does not
depend on the wage structure; suggesting that they are not aware that quiet work-
ing conditions would increase their performance pay. This suggests workers may fail
to mitigate earnings losses by either sorting into quieter jobs where they are more
productive or by demanding compensating differentials.
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Workplaces in low and middle income countries can be egregiously loud. In some, factories

workers can experience jet-engine-level noise daily (Nandi and Dhatrak 2008; Kimani 2011).

Cognitive science research suggests noise can impair workers’ task management skills like

attention and working memory (Szalma and Hancock 2011; Matthews et al. 2000b; Jones

and Broadbent 1991). That means that in addition to annoyance and hearing damage,

these workplace environments may reduce workers’ earnings by hindering their productiv-

ity. Whether this is the case depends on the importance of these skills for productivity

and whether workers understand these effects. Workers who understand that they are less

effective in noisy working conditions, may mitigate earnings losses by sorting into quieter

jobs where they are more productive or demanding compensating differentials.

This paper uses two randomized experiments in Kenya to investigate the relationship

between noise exposure and productivity. First, I estimate the reduced-form impact of noise

on productivity by randomly exposing participants in a textile training course to engine

noise. Second, I study the importance of cognitive function as a mechanism by randomly

exposing individuals from the same population to the same engine noise while they complete a

battery of cognitive tests and an effort task as a placebo.1 Third, in both experiments I assess

whether individuals understand how noise affects their productivity by offering participants

the chance to pay for quiet working conditions while I randomly vary whether their pay

depends on their performance. If individuals understand the impact of noise, they will

be willing to pay more for quiet working conditions when they will recoup some of this

investment through increased performance pay.

I demonstrate that noise can meaningfully reduce productivity in a real-work setting.

While a significant body of literature considers the impact of noise on cognitive function,

very little work considers how this effect might manifest itself when individuals are faced

with incentivized tasks in a real-work setting (Matthews et al. 2000b). I recruited a sample

of 128 manual laborers accustomed to factory noise for a two-week textile production course

at a government vocational training facility outside of Nairobi, Kenya. After training the

sample to complete an incentivized production task, I randomly exposed participants to

engine noise while they worked autonomously for a piece rate. In order to isolate the impact

of noise, I chose a task that did not involve communication, randomly varied which work

location was noisy, and randomized work stations to minimize participants’ familiarity with

their neighbors. I estimate that increasing the noise level from that of a dishwasher to that

of a vacuum cleaner (an increase of 10 dB) reduced output by approximately 5%.

Given that the task did not involve communication, the most plausible channel for this

1This mechanism holds particular interest because a recent literature in economics considers how condi-
tions of poverty might affect cognitive function (Mani et al. 2013; Schilbach et al. 2016).
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impact is by the effect that noise has on cognitive function, which decades of laboratory work

has shown can be easily impaired by noise (Evans and Hygge 2007; Hockey 1970; Jones and

Broadbent 1991; Matthews et al. 2000b; Smith 1989; Szalma and Hancock 2011). Cognitive

function encompasses all of the general-purpose abilities involved in task management. This

includes the ability to direct one’s attention, manipulate information in memory and switch

between tasks (Diamond 2013). These skills appear critical for many types of work. For

example, a factory foreman requires a broad range of attention to ensure that his/her workers

do not make mistakes. An auto-rickshaw driver must simultaneously drive and take directions

from his/her passenger. Cognitive science research has shown stronger cognitive function is

correlated with better job market outcomes, physical health and success in school (Bailey

2007; Borella et al. 2010; Crescioni et al. 2011; Duncan et al. 2007; Gathercole et al. 2004).

However, this effect could also be driven by workers choosing to reduce effort. For

example, workers may resent working in an unpleasant environment and reduce effort to

retaliate. To evaluate the relative importance of these two possible mechanisms, in a second

experiment I randomly exposed 213 individuals from the same population to noise while they

completed a wide variety of cognitive tests and an effort task where they alternated pressing

the “a” and “b” keys on a keyboard for 10 minutes (DellaVigna and Pope 2018). This effort

task requires all the same inputs as the sewing task (e.g. motor control and effort), except

it requires minimal amounts of cognitive function.

The same engine noise reduced performance on a common factor index of cognitive test

outcomes by 0.07 standard deviations, but had no impact on effort task performance. In

fact, the point estimate suggests that doubling the noise level increases the number of key

presses by 1.9 relative to a control mean of 2192, and any decrease in effort larger than

1.4% is outside of the 95% confidence interval. Combined with the evidence from the first

experiment, this suggests noise in work environments can lower workers’ productive abilities.

I then demonstrate that individuals neglect the productive impact of noise, suggesting

they will fail to mitigate earnings losses. While a significant literature examines the disutility

individuals derive from living in noisy conditions (see Navrud (2002) for an overview), no

work has assessed whether individuals are aware of its productive impact. More generally,

while a rapidly expanding literature suggests experiences associated with poverty might have

important economic consequences by impairing cognitive function, almost nothing is known

about whether individuals take actions to protect their cognition from these stimuli (Kremer

et al. 2019).2 3 Understanding whether individuals are aware of environmental hazards to

2For example, there is recent work on on effects of alcohol consumption, heat, air pollution, sleeplessness
and financial strain (Schilbach 2017; Adhvaryu et al. 2016b; Zivin and Neidell 2012; Bessone et al. 2019;
Kaur et al. 2019).

3Schofield (2014) demonstrates that individuals fail to make food purchases that would improve their
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their productivity is critical to predicting the real-world impact of such impediments.

In order to assess this possibility, I allowed participants in both experiments to pay

for quiet working conditions and randomly varied whether they were paid based on their

performance. If individuals attend to the productive effects of noise exposure, they should

be willing to pay more to work in quiet when their earnings depend on their performance.

Instead, I find that individuals’ willingness to pay was unaffected by the wage structure.

I use my within-person variation to evaluate potential mechanisms underlying this ne-

glect. I first assess whether individuals who were relatively unaffected by noise are driving

the result. By estimating individual-level treatment effects, I show that the impact of noise

on an individual’s productivity does not predict the responsiveness of their demand to per-

formance pay. Second, I show that a simple prompt to think about the productive impacts

of noise also did not increase demand responsiveness. Finally, I examine individuals stated

beliefs and find that responses are consistent with a failure to notice the productive impact

of noise (Hanna et al. 2014; Schwartzstein 2014). In particular, individuals were able to

somewhat predict their output but were unable to predict the impact of noise. Moreover,

individuals appear to have realized that they did not understand the productive value of

quiet and were unwilling to stake any money on their stated beliefs.

I conclude by considering the efficiency implications of this neglect for labor market

sorting. If workers ignore the productive effects and sort solely based on the disutility of

noise, the size of the inefficiency depends on the magnitudes of the two effects and their

correlation. I find that while disutility from noise is highly heterogeneous, for most subjects

it is smaller than the productivity effects. These disutility values are also uncorrelated with

the productivity effects estimated using the within-person variation. Together this suggests

that worker sorting is likely to be inefficient.

The remainder of this paper is organized as follows. Section 1 fixes ideas with a conceptual

framework. Section 2 discusses the prevalence of noise pollution in developing cities and

its effects on cognitive function, before Section 3 describes the design and results of the

productivity experiment. Section 4 then presents the design and results of the cognitive

experiment, Section 5 assesses whether individuals neglect the effects of noise and considers

implications for efficiency, and finally Section 6 concludes.

productivity which suggests possible neglect. Also previous work in psychology on the human capacity for
introspection (for example, Nisbett and Wilson (1977)) also suggests individuals in these environments might
not be aware of their potential impact.
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1 Conceptual Framework

To fix ideas, consider the following simple model in the style of Rosen (1986). Suppose

there is an economy with two sectors: noisy and quiet. Firms with heterogeneous costs of

abatement given by γj must choose in which sector to produce. Each firm is seeking one

worker to produce a good the firm sells for a unit price.

Workers have free entry and can produce according to Y (ηi, Si, ei) = (A− Siηi)ei, where

Si = 1 if the worker is in the noisy sector and ηi is a heterogeneous productivity loss due to

noise. Workers face convex cost of effort c(ei) and are compensated with sector specific piece

rates wn and wq. Workers then choose effort levels for each sector to equalize the marginal

cost and returns to effort. In the quiet sector, this yields a homogenous level of effort, eq,

and output, Y q, and heterogeneous effort, en(ηi), and output, Y n(ηi), in the noisy sector.

Workers choose which sector to enter by maximizing the following utility function where ψi

is a heterogeneous disutility cost of noise:

U(Si) = (1− Si)(wqY q − c(eq)) + Si(wnY
n(ηi)− c(en(ηi))− ψi)

Workers then enter the noisy sector if and only if,

wnY
n(ηi)− c(en(ηi))− ψi > wqY

q − c(eq) (1)

wn >
wqY

q + ψi + c(en(ηi))− c(eq)
Y n(ηi)︸ ︷︷ ︸

χi

(2)

Where χi is a random variable determined by the disamenity value of working in noise, the

decreased productivity in noise, and the associated decrease in the cost of effort.

Firms make abatement decisions assuming this sorting process. A firm chooses not to

abate if and only if their expected share of the output in the noisy sector, given the types of

workers choosing to work in noisy environments, exceeds their share in the quiet sector less

the abatement cost.

E [(1− wn)Y n | wn > χ] > (1− wq)Y q − γi (3)

(1− wq)Y q −E [(1− wn)Y n | wn > χ] < γi (4)

Because workers have free entry, wq will be fixed such that wqY
q is equal to the workers’

outside option. The wage in the noisy sector, wn, will then be determined by equalizing

the supply of workers choosing the noisy sector and the demand from firms choosing to not

abate. Letting, F (·) be the CDF of the random variable χi and G(·) be the CDF of γi gives
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the following equilibrium condition:

F (wn) = 1−G ((1− wq)Y q −E [(1− wn)Y n | wn > χ]) (5)

This implies that the wage premium and resulting allocation depends on the joint distribution

of disutility, ψi, and productivity losses, ηi caused by noise.

Now, consider the case where a worker erroneously believes that ηi = 0 due to inattention.

The worker now believes they are equally productive in noise and quiet, will choose the same

level of effort in each, and will choose to sort into the noisy sector if and only if the wage

premia exceeds their disutility.

wn >
wqY

q + ψi + c(eq)− c(eq)
Y q

Y q(wn − wq) > ψi

Thus neglect not only changes the wage level by shifting worker’s beliefs about how much

effort they will exert and the return they will earn, but also changes the composition of

workers depending on the joint distribution of ηi and ψi.

2 Background

2.1 Noise Pollution

Noise pollution is one of the oldest externalities documented in the written record. In the

6th century BCE, the Greek colony of Sybaris had such a noise problem that they banned

potters, tinsmiths and other noisy tradesmen from working in the city (Goldsmith 2012).

When the founding fathers of the United States gathered in the Pennsylvania State House

in May 1787 to craft the constitution, they first spread dirt on the cobblestone streets

surrounding the building to prevent the noise of passing carriages from disrupting their work

(United States National Archives and Records Administration 2017). Since the industrial

revolution, sources of noise pollution have proliferated at an impressive rate (Bronzaft 2002).

Given weak state capacity, it is unsurprising that noise pollution is pervasive in the rapidly

urbanizing and industrializing developing world. In many cities the noise level experienced

by simply standing on the street reaches dangerous levels (Wawa and Mulaku 2015; Mehdi

et al. 2011; Bhosale et al. 2010). For example, areas of the central business district of Nairobi

approach 85 dB (the level of noise made by a power lawn mower).

Beyond city streets, many workplaces are filled with noise. The Indian National Institute

of Occupational Health reports that noise levels in most industrial occupations exceed 90
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dB, a level that the United States Centers for Disease Control estimates will induce disabling

hearing loss in one out of four workers exposed (Nandi and Dhatrak 2008). Similarly, an

NGO in Kenya finds that 75% of metal workers are exposed to unsafe levels of noise and

22% already have disabling hearing loss (Operation Ear Drop 2010).

While comprehensive data on noise levels does not exist outside of the European Union,

we can use hearing loss as a proxy for exposure. Figure A1 combines measurements of

hearing ability recently collected by Mimi (2017) with data on city-level GDP from Berube

et al. (2014) to show that citizens of poorer cities have substantially more age-adjusted

hearing loss. The average citizen of Delhi or Mumbai has as much hearing loss as residents

of New York or Tokyo who are eight years older. While there are undoubtedly many causes

for this difference, for example variation in access to medical care, it suggests that citizens

in poorer countries are likely exposed to more noise.

2.2 Noise Measurement and its Interpretation

The loudness of sound is typically reported using A-weighted decibels denoted dB(A) or dB

for short. This unit is the log ratio of the pressure generated by the sound relative to the

minimum pressure humans are capable of detecting after weighting for humans’ sensitivities

to different frequencies. As such, the numerical value of any unit is rather unhelpful and

changes can be tricky to interpret. For the interested reader, Murphy and King (2014)

provides a helpful overview of both the measurement of sound and its interpretation. In

terms of levels, a few helpful benchmarks are: 0 dB is the threshold of human hearing, 40-50

dB is a quiet conversation, 70-80 dB is heavy traffic, 110 dB(A) is a typical woodworking

shop, and 140 dB(A) is the pain threshold. Interpreting changes can be additionally difficult

because human ears do not perceive a doubling of pressure as a doubling of “loudness”. In

terms of changes: 3 dB is just perceptible by most people, 5 dB is clearly perceptible and

10 dB is twice as loud. In an attempt at improving comprehension, thought this paper I

report noise levels in 10s of decibels so that coefficients can be interpreted as the effect of

“doubling” the loudness. I also use the the relative loudness of a dishwasher and vacuum

cleaner as an analogy for the relative loudness of the treatment and control rooms, but this

analogy is necessarily imperfect, depending both on the quality of your appliances and your

typical distance from them.

2.3 Noise and Productivity

Despite the research on the cognitive impacts of noise, we have almost no causal evidence of

the impact of noise on economic outcomes in real-work settings. Weston and Adams (1935)
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randomized hearing protection among 20 textile workers and estimated that output was

3% higher among those with hearing protection over the next 18 months. Unfortunately,

the study does not report standard errors or any statistical tests which makes it difficult

to interpret this result. Broadbent and Little (1960) studied the effects of installing noise-

abating materials in one room of a Kodak factory and found that the resulting noise decrease

of 10 dB was associated with fewer worker errors; although, there they also found error

reductions in the other factory rooms that did not receive abatement causing the authors

to be concerned about what other factors may have also changed. Finally, Levy-Leboyer

(1989) cross-randomized 52 workers into assembling either carburetors or air conditioners in

either their typical noisy conditions or a separate quiet room. Workers assigned to assemble

air conditioners in quiet were 14% faster than those in normal conditions; however, those

assigned to assemble carburetors in quiet were 10% slower than their counterparts in noise.

Although no study provides large-sample evidence that distinguishes the effects of noise

exposure from other location-specific features, together this work suggests that noise might

affect real-work outcomes.4

2.4 Cognitive Function and Productivity

Studies on cognitive function and productivity generally fall into one of two groups, the first

of which examines how stimuli can affect cognitive function. A large psychology literature

studies how a variety of factors such as heat, fatigue, sleep, and health can affect cognitive

performance (see Matthews et al. (2000a) or Dean et al. (2017) for overviews). Additionally,

recent literature in economics examines how conditions of poverty can impede cognitive

function (Haushofer and Fehr 2014; Lichand and Mani 2016; Mani et al. 2013; Schilbach et

al. 2016). These studies then generally appeal to theory, the correlational evidence mentioned

above, and our intuition about the importance of cognitive abilities to make inferences about

how stimuli might affect productivity.

A second group of studies examines how stimuli associated with poverty can affect pro-

ductivity directly. This includes recent work in economics on how temperature, alcohol,

air pollution, hunger, sleeplessness, and financial strain can affect productivity (Adhvaryu

et al. 2016b; Chang et al. 2016b, 2016a; Park 2017; Schilbach 2017; Schofield 2014; Zivin

and Neidell 2012; Bessone et al. 2020; Kaur et al. 2019). While these studies provide in-

valuable evidence on the potential for environments to affect productivity, they are unable

to speak directly to the quantitative importance of a cognitive mechanism because the fac-

tors that they study generally affect productivity through multiple channels or do not have

4Researchers have studied the impact of OSHA regulations on productivity; however, such work is unable
to separate the effects of noise regulations from other safety regulations (Denison 1978; Gray 1987).
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quantitative measures of cognitive function.

Finally, almost none of this work directly evaluates whether individuals understand how

environments can affect their productivity via cognitive impediments (Kremer et al. 2019).

If individuals appreciate these impacts, they might be able to take actions that significantly

attenuate the effects estimated in controlled experiments. However, there is some reason to

doubt this is the case. Schofield (2014) finds individuals do not consume calories that would

improve their productivity, Adhvaryu et al. (2016b) reports that managers were surprised

by the results of their study demonstrating heat reduced productivity, and research in psy-

chology such as Nisbett and Wilson (1977) suggests individuals may not have the capacity

to truly monitor their own cognitive processes. On the other hand, Adhvaryu et al. (2016a)

finds evidence that managers alter worker assignments in response to air pollution induced

productivity shocks. This study provides direct evidence on this question by demonstrating

demand for quiet working conditions is unresponsive to incentives to increase productivity.

3 Experiment One: Noise and Worker Productivity

This experiment provides reduced-form evidence of the impact of noise on productivity.

By randomly exposing workers in a textile training course to engine noise, I estimate that

increasing the noise level by 10 dB (from the noise level of a dishwasher to that of a vacuum)

reduces output by approximately 5%.

3.1 Experimental Design

3.1.1 Context

The survey team recruited 128 individuals for a ten-day sewing course at the Kenyan Na-

tional Industrial Training Authority’s Technology Development Center (TDC), a government

vocational training facility located in an industrial development zone outside of Nairobi. This

facility is well-suited to the experiment because it allows for significant realism. The trainers,

machines and materials are all similar to what exists in a factory setting because the center’s

primary purpose is to train workers to then work in nearby textile factories.

We recruited our sample from groups of manual laborers who gather at the gates of

nearby textile factories hoping to be hired for a day’s work (see Figure A2). This population

is well suited for this experiment for three reasons. First, the fact that respondents typically

work in factories means that they are accustomed to significant levels of noise. Second, these

participants have the opportunity to use the skills learned in the course to gain employment,

which helps the experience approximate typical working conditions. Third, the sample is

9



demographically similar to many poor communities where we are interested in the importance

of cognitive function (Table B1).5

3.1.2 Generating Noise

Noise exposure can be manipulated at either the individual or ambient levels and by ei-

ther adding or reducing noise exposure. Ambient-level abatement is undesirable from an

experimental perspective because it involves significant, location-specific investments that

confound the reduced noise with other location-specific features. For example, a common

abatement technology is to replace or pad the existing ceiling with more absorbent ma-

terial. While effective at reducing noise, this means that those randomized to the room

with the absorbent ceiling are necessarily also treated with the other features of that room

such as temperature, humidity, and ventilation. Individual-level protection does not involve

location-specific investments, but noise control experts view it as an option of last resort

due to its relative ineffectiveness and the safety risks that it creates by impeding workers’

ability to warn each other about hazards (Hansen and Goelzer 2001). Additionally, hearing

protection not only alters the experienced noise level but also affects the physical comfort

of the participants. Similarly, adding additional noise at the individual-level is undesirable

because it requires subjects to wear headphones which may be unusual during production

tasks or uncomfortable. For these reasons, I chose to manipulate noise by adding a new

ambient noise source to the preexisting noise generated by the sewing machines.

In order to create noise representative in both the level and quality of that faced by

factory workers and residents of developing countries more broadly, I chose to generate noise

with a car engine that the TDC uses for auto-mechanic training classes (see Figure A3). This

type of noise does not contain any informational content and is relatively consistent, but is

not perfectly constant like a white noise machine. These qualities match noise pollution

generated by both traffic and occupational noise generated by large industrial machines.

This has two benefits: first, the effect of noise is known to depend on predictability and

variability (Matthews et al. 2000b), thus the representative nature of the noise is important

for external validity; and second, this type of noise is unlikely to be novel to participants,

5One less than ideal characteristic of this population is that most have very limited experience in operating
sewing machines. This means that participants are learning substantially throughout the course of the
experiment which creates variance in the outcome measures and raises concerns that any effects might be
specific to environments where individuals are growing accustomed to the task. I deal with the former by
stratifying randomization so that in each session half of workers are treated allowing me to absorb as much
of the variation from learning as possible. The later I asses by examining treatment effect heterogeneity both
across the two weeks and within each session. As discussed in subsubsection 3.3.5 there does not seem to be
much heterogeneity on either dimension suggesting the effect does not depend on participant’s comfort level
with the task.

10



which limits concerns about whether any productivity effects are due to respondents simply

changing behavior in response to a novel stimulus. The end result is that participants in

the control condition experienced noise approximately equal to that of a home dishwasher

running in the background, mostly due to sounds made by the sewing machines. While in

the treatment condition, workers experienced noise equivalent to listening to a home vacuum

cleaner.

As noted previously, the noise level experienced in many factories is sufficiently loud to

pose a danger to hearing loss. For ethical reasons, this level of noise is never experienced

by participants in the experiment. The American Occupational Safety and Health Adminis-

tration (OSHA) requires firms to implement a hearing conservation program if workers are

exposed to 85 dB(A) or more for eight hours a day or more. To stay well below this limit, the

noise level was continuously monitored and exposure did not exceed 80 dB(A) for a period

of six hours. This level of exposure was approved by both the MIT Committee on the Use

of Humans as Experimental Subjects and the Kenyan Medical Research Institute Scientific

and Ethics Review Unit.6

One might be concerned that in addition to creating noise, placing an engine outside

of rooms could alter other environmental conditions. For example, engine exhaust might

diminish the room’s air quality or annoyance with the noise might cause participants to close

windows, changing the temperature inside the room. These altered environmental conditions

could then have a direct effect on productivity independent of any effects of the noise level.

Thus, in order to ensure that treatment only increased noise exposure, enumerators were

instructed to keep the windows and doors unchanged and ensure that the exhaust pipe

from the engine pointed away from the workroom doors into an open courtyard. To assess

whether this was successful, I measured CO2 (as a proxy for engine exhaust), temperature,

and humidity during every session.7

3.2 Production Task

I chose sewing pockets as the incentivized production task for several reasons. First, it

is a task that can be completed relatively quickly, which allowed me to observe variation

in performance over a short time period. Second, it requires many key sewing skills (e.g.

sewing under control, sewing in parallel lines, hemming, and taking corners). In fact, the

TDC uses this task as a tool to evaluate potential instructors for precisely these reasons.

6The protocol numbers are 1606621783 and Non-KEMRI Protocol Number 520 for MIT COUHES and
KEMRI SERU respectively.

7CO2 is typically highly correlated with other exhaust pollutants such as particulate matter and black
carbon (Johnson et al. 2016; Abdel-Salam 2015).
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Third, these sewing skills in turn require a variety of cognitive functions. For example,

sewing in a straight line requires paying close attention to how hard one presses the machine

foot pedal, how quickly one moves the fabric with both hands, and exactly where the needle

is puncturing the fabric being sewn at all times. These cognitive requirements are common

to many production tasks that workers perform in low and middle income contexts, which

improves the external validity of the study. Third, this task does not require communication.

If the task I chose for the study required participants to communicate, any observed effects

would be the result of impairing both communication and cognitive function. This would

then preclude me from using this experiment to explore the importance of cognitive function

as a mechanism and participants’ awareness of this importance. Finally, the task does not

generate considerable noise. If the task I chose created significant noise (for example metal

work), I would observe a mechanical positive correlation between noise and productivity.

The quality of the pockets produced was graded each hour by treatment-blind enumer-

ators according to six criteria developed by the TDC (see Figure 2 for an example pocket

with the criteria marked). In the analysis below, I use these grading data to construct three

types of productivity measures. First, I use the number of pockets created per session as a

pure quantity metric. Second, I combine quantity and quality by calculating the number of

“points” earned across all pockets produced in a session. For example, if a subject made one

pocket meeting four criteria and another meeting three criteria, they would earn a total of

seven points. This is my most continuous metric where I have the most power. Finally, I re-

port the number of pockets meeting the different possible quality thresholds per session. For

example, the number of pockets meeting at least two criteria, the number of pockets meeting

at least three criteria, and so on. The distribution of these outcomes is skewed suggesting

any proportional treatment effect is unlikely to be well estimated in levels, but has zeros (see

Figure A5). Thus, I use inverse hyperbolic sine transformations as my preferred outcomes

following Burbidge et al. (1988).8 For robustness, in each table I also present the results in

levels and Table B3 presents the results of Poisson regressions for the reduced-form. All of

the methods yield similar results.

3.2.1 Experiment Timing Overview

For logistical reasons, the course was repeated in four rounds with the number of respon-

dents equally split over each round. On the first two days of the course, TDC staff taught

8An inverse hyperbolic sine transformation is defined as f(y) = ln
(
y +

√
1 + y2

)
. It has the benefit

that, except for values of y close to zero, f(y) ≈ ln(2) + ln(y). Thus, as long as there are not too many
zeros and values are reasonably large, coefficients can be interpreted in a similar manner to a standard log
transformation.
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participants how to operate a sewing machine (see Figure 1a). This included basic skills such

as how to thread the machine and how to avoid breaking the sewing needle. After learning

these basic skills, workers then learned how to sew a pocket. All training occurred without

engine noise.

Respondents worked three sessions per day for the remainder of the experiment, sewing

pockets and earning a piece rate for each perfect pocket that they created. On the last

two days, respondents had the opportunity to pay to work in quiet for two sessions each

day. For the third session on these days, respondents were randomly assigned as normal.

On all days, participants worked for three two-hour sessions separated by one-hour breaks

without knowing their future treatment status (see Figure 1b for a graphical depiction of the

schedule). These breaks which were taken in a quiet location within walking distance of the

two rooms where participants made pockets, allowed workers who were in the more noisy

environment to decompress between sessions. Combined with the fact that workers did not

know their future treatment statuses, this allows me to isolate the contemporaneous effects

of noise. This improves my power in the analysis below because it allows for the pooling of

all workers within a session based on their contemporaneous treatment status, rather than

having to include interactions with their previous or future exposures.

3.2.2 Lasting Effects of Noise

While I designed this schedule to isolate the contemporaneous effects of noise, whether noise

exposure has lasting effects is an important policy question. I thus also include the following

decision tasks that were completed in quiet at the end of the day:

1. On every production day, participants decided how much to save in/withdraw from

an account with a 1% per working-day interest rate (approximately 7% interest over

the course of the experiment). This was intended to assess whether noise exposure

reduced willingness to forgo current consumption by either raising the contemporaneous

marginal utility of consumption or narrowing attention to the present.

2. On the fifth day, participants decided whether to buy maize flower in 5 kg bags or 1

kg bags. To test for increased inattention prices were set so that it was less expensive

to buy five 1 kg bags than one 5 kg bag.

3. On the sixth day, participants decided whether to stay an additional hour and continue

working for a piece rate in quiet. This was intended to assess whether past noise reduced

participants’ willingness to exert effort.
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3.2.3 Randomization

For each of the sessions following training, I randomized which participants were exposed to

engine noise while working. For this purpose, I generated random schedules for each round

that satisfied both of the following constraints:

• Each participant spent half of the sessions in a noisy room and half in quiet room.

• In each session, an equal number of participants (16) worked in the quiet room and in

the noisy room.

I then randomly assigned each participant to one of the schedules. Thus because treatment

status varies at the room by session level, I cluster all analyses at this level. For robust-

ness, I also report randomization inference results based on re-assigning treatment status

with the same code. Both inference approaches yield similar results. This randomization

procedure was necessary because my piloting demonstrated significant heterogeneity in the

ability to complete the production task across both individuals and time. Thus, even though

simple randomization procedures would have resulted in balance in expectation, the risk of

imbalance in finite samples was substantial. Because of the within-person randomization

and minimal attrition (4.41% of all scheduled sessions, not differential by treatment status)

this procedure results in close to perfect balance (see Table B2 for balance tests)

In order to avoid any location-specific confounds, I randomly assigned each of two similar

rooms (room “A” and room “B”) to be the noisy room for half the sessions within each

round.9 Combining this randomization with the workers’ noise schedule, I then created a

room schedule for each participant. For each session, each participant was then told whether

they were supposed to report to room “A” or room “B”. Thus, workers could not anticipate

whether they would be in noise or in quiet in future sessions, reducing concerns about workers

intertemporally substituting effort. Finally, while participants were instructed not to talk,

to further minimize the scope for communication, I randomized seating assignments within

each room and session to prevent workers from becoming familiar with their neighbors.

Following this randomization method, I include worker, room and session fixed effects in my

regressions, which significantly improves my power.10

9The rooms were located within walking distance of each other in the compound, but not so close that
sound could travel from one to the other.

10I could include seat fixed effects as well, but do not since this randomization was done to ensure noise
did not affect productivity by impairing communication rather than to control for factors that may influence
the outcome directly.
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3.2.4 Compensation

On training days, all respondents received 600 Ksh (approximately $6.00) for participating.

For each production session, I randomized workers to one of three wage conditions with equal

probability while stratifying by participant but independent of other factors. Each wage was

a combination of a piece rate paid based on the number of perfect pockets produced (5, 10

or 15 Ksh) and a flat payment calibrated so all three conditions would yield approximately

200 Ksh per session (or 600 Ksh per day).11 Workers were informed at the start of each

session of their assigned wage for that session. This allows me to benchmark the observed

effect of noise against the effect of traditional incentives. Following this randomization, in

all regressions I include piece-rate fixed effects.

3.3 Analysis and Results

3.3.1 Environmental Effects of Treatment

By adding the sound of the engine to the typical noise created by sewing machines, treatment

increased the noise level by approximately 7 dB (Figure A4 and Table 1).12 As noted

previously, this difference is equivalent to the difference in noise between a home dishwasher

and a home vacuum cleaner. Meanwhile, no other environmental variables were affected,

suggesting that the pollution and temperature control procedures were effective.

3.3.2 Estimation Specifications

I estimate two different specifications. The first is the reduced-form effect of being in a

treated room on productivity outcomes for individual i in room j at time t being paid wage

w shown in equation (6). The regression includes individual, time, room, and wage fixed

effects and has standard errors clustered at the level of randomization (room × session).

yijtw = τ · Treatmentjt + αi + γt + φj + κw + εijtw (6)

yijtw = ν · Noise Leveljt + αi + γt + φj + κw + εijtw (7)

11In the first round, the corresponding flat rates were 180, 160, and 140 Ksh, respectively. After partici-
pants in the first round were more productive than anticipated, the flat rates were reduced to 165, 130, and
95 Ksh to make the wage treatments as income neutral as possible. All wage fixed effects are determined
based on the piece rate, which is common across all rounds.

12For interpretability, all noise levels in regressions are reported in 10s of decibels because the human ear
perceives an increase of 10 dB as a doubling of the noise level. Thus, coefficients can be interpreted as the
effect of doubling the noise level.
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To improve interpretability, I also estimate an instrumental-variables specification shown in

equation (7) using an indicator for being in a treated room as an instrument for the noise

level.13 All noise levels are reported in 10s of decibels because the human ear perceives a 10

dB(A) increase as a doubling in loudness; this means all coefficients can be interpreted as

the effect of doubling the perceived noise level on the outcome variable.

3.3.3 Pre-registration, deviations and piloting

While this experiment was pre-registered at the AEA trial registry under ID AEARCTR-

0001500, I did not file a pre-analysis plan. In the pre-registration, filed before the first

experiment, I specified the primary outcomes would be “Productivity in producing the prac-

tice good, performance on cognitive tests, decisions made in three real stakes decision tasks,

and willingness to pay for quiet.”, but did not specify the functional forms for these out-

comes. I present all functional forms considered except for log(1 + n) which was replaced

with the inverse hyperbolic sign transformation because it is more standard and similarly

solves the issue of skewness. No heterogeneity analyses were pre-specified and should be

treated as exploratory.

I originally planned to simultaneously collect cognitive function data during the first

experiment, but this did not work. Specifically, I did not want to take too much time

away from sewing and only included one short test within each session. This resulted in

substantial treatment imbalance across both test domains and baseline abilities. To rectify

this situation, I conducted the second experiment presented in this paper. An effort task

was not originally going to be among the cognitive function measures, but was included in

the second experiment as a method of disentangling the relative contributions of cognitive

function and other mechanisms. Additionally, belief elicitations were added to the second

experiment after seeing the lack of response in willingness to pay to the wage structure in

the first experiment.

I ran one pilot with 32 subjects for the first experiment and no pilots for the second. I

used the effect size from this pilot to determine the sample size for the first experiment. For

the second, I used simulations based on the variability in the first experiment.

13Using only a simple indicator for treatment discards the significant variation in treatment intensity
shown in Figure 4. Since this treatment intensity is quasi-randomly determined based on the noise levels at
the compound and whether the engine was running smoothly or rattling, in Appendix B I use this variation
to obtain more precise estimates by generating separate treatment indicators for each decile of intensity
(difference in noise level between treatment and control room), Treatmentjpt, that are equal to one if room
j was treated during a session with intensity p and zero otherwise. There are no clear relationships between
session intensity and any observable characteristics besides noise (see Table B5) and the instruments yield a
strong first stage (see Table B6).
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3.3.4 Main Results

Workers sewing in treated rooms produced approximately 3% fewer pockets (Table 2). Ta-

ble B3 shows Poisson regressions yield similar results; treatment significantly decreases out-

put by 3%. Fisher p-values shown in Table B4 yield similar inferences. Scaling this by the

average noise change implies a 5% decrease in productivity for every 10 dB increase (or per-

ceived doubling) in the noise level (Table 3).14 In these specifications, there appears to be no

effect of the noise on the number of perfect pockets. This is likely due to floor effects. During

the first days of work, most participants were unable to make any perfect pockets. Because

individuals cannot produce negative pockets, this attenuates the estimated treatment effect.

An alternative explanation is that workers substitute their effort so that they make fewer

but higher quality pockets. This is not borne out in the data. If effort substitution were

occurring, we would expect the proportion of perfect pockets to be higher in treatment than

in control. Table B8 shows this is not the case.15

One might be concerned that subjects will become accustomed to working in noise and

adapt with longer exposure; however, this is unlikely for two reasons. As noted above,

the participants are already accustomed to working in large, noisy factories, and they are

exposed to frequent road noise (the community sits at the intersection of two major highways

from Nairobi to Mombassa and Arusha). Additionally, other field assessments of long-

term noise exposure typically do not find substantial adaptation (Matthews et al. 2000b).

For example, children chronically exposed to aircraft noise have been found to have their

performance continually impaired (Cohen et al. 1981; Hygge et al. 2002; Stansfeld et al. 2005).

Workplace noise exposure has also been found to continue to affect the cognitive performance

of Norwegian navy personnel even though they regularly work in these conditions. (Irgens-

Hansen et al. 2015).

What is less certain is how these effects map into different types of tasks. These sewing

tasks were chosen explicitly because they appear to depend on cognitive function. It is

unlikely that noise exposure would impede the ability of someone doing a less cognitively

demanding task such as holding open a door. On the other hand, many factory employees

are required to work in teams assembling complex objects, and noise would likely impede

both each individual’s cognitive function and the team’s ability to coordinate. Another

complication with extrapolating from these effects is that different sources of noise pollution

vary in predictability and informational content. While the noise in this study was chosen

14Using a larger portion of the variation by generating separate instruments for different treatment inten-
sities yields slightly larger coefficients (see Table B7).

15It is of independent interest why there was no effect of noise on quality. Anecdotally, subjects slowed
down to avoid mistakes since they knew they would not be rewarded at all for pockets not meeting all six
criteria. Unfortuantely, I do not have data at a fine enough temporal resolution to examine this empirically.
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to be representative in level and quality of major sources of noise pollution, they are by

no means the only sources. Further research is needed to understand the effects of other

common sources, such as your child overhearing your neighbor’s television while trying to

study.

3.3.5 Treatment Effect Heterogeneity

One might wonder whether this effect is driven by low-ability workers. If this is true, then

a firm could eliminate the effect by firing the bad workers. To assess this possibility, I

calculate each individual’s performance in the control condition and split the sample at

the median.16 I then estimate the treatment effect separately for each group in a stacked

regression with common fixed effects. The treatment effects are equally large among better

workers (Figure A7).

Another question is whether these results are specific to contexts in which individuals are

learning how to perform a task or where they have not yet had the chance to adjust fully to

their surroundings. Unfortunately, logistical constraints prevented recruiting a sufficiently

large sample for a sufficient amount of time in order to convincingly answer this question.

I provide some evidence on this question by estimating the treatment effect separately for

each week and for the first and second hours of each session in stacked IV equations with

common fixed effects. These results do not suggest the presence of heterogeneity along this

dimension; however, caution should be given to these results as they are underpowered and

unplanned (see Figure A8 and Figure A9).

3.4 Lasting Effects of Noise

Some models of the effects of noise predict that exposure should generate lasting effects

(Matthews et al. 2000b). While this study was designed to minimize these effects by in-

cluding breaks in the schedule, I assess whether the effect of noise exposure is cumulative

by regressing the inverse hyperbolic sine-transformed outcomes on a treatment indicator, a

lagged treatment indicator and their interaction.17 The results are very imprecise due to the

reduction in effective sample size, so they should be interpreted with caution. Some of the

coefficients are large enough to be economically meaningful, but overall the results do not

provide compelling evidence that lagged treatment is important (Table B10). Additionally,

treatment did not affect any of the decision tasks (Table B11). This seems to suggest that

16I exclude the current session from the calculation to avoid the overfitting problems highlighted by Abadie
et al. (2014).

17The lagged treatment indicator is set to zero for the first session of each day.
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the effects of noise do not persist into later periods of quiet; however, given that the experi-

ment was not primarily focused on this question and power in these tests is low, future work

should evaluate this question directly.

3.5 Conclusions from Experiment One

To interpret these magnitudes, it is helpful to compare them to other methods of improving

productivity. In this experiment, doubling the piece rate from 5 Ksh to 10 Ksh while lowering

the flat rate to compensate raised output by 3%.18 This is consistent with other recent

work showing small effects of piece rates on intensive margin effort provision. For example,

DellaVigna and Pope (2018) finds an elasticity of 0.03, DellaVigna et al. (2016) finds an

elasticity of 0.09, and Bessone et al. (2020) finds an elasticity of 0.025.

This suggests the importance of understanding other inputs to productivity other than in-

tensive margin effort. Kaur et al. (2015) found that offering commitment contracts increased

output by 2.3%. Bessone et al. (2020) finds naps relative to taking a break increased pro-

ductivity by 6%. Finally, Bloom et al. (2013) found that a five-month intensive management

intervention in an Indian textile firm increased output by 9%.

Another way to interpret the size of these effects is to consider how these estimates might

affect firm noise-abatement decisions. Unfortunately, it is impossible to make any general

claim about cost-effectiveness because abatement costs are highly context-specific. Costs

can vary by orders of magnitude depending on the noise’s source, the building structure,

and the production processes (Hansen and Goelzer 2001). Nevertheless, one can consider

whether this effect is sufficiently large to be relevant to some firms’ abatement decisions. In

particular, Lahiri et al. (2011) report a case study of a large computer manufacturing firm in

Singapore, where reducing the noise level by 23 dB cost the firm $156 per worker per year.

Combining this cost with my estimate and assuming all productivity gains would translate

into increased profits implies that this firm would break even on abatement if each worker

produced $1,357 per year ($5 per day) in profit. For comparison, workers at this firm were

paid $100 per day. This suggests that, at least for some firms, a 5% increase in productivity

is sufficient to affect abatement decisions.

Additionally, these effects are as large or larger than other environmental pollutants

18Table B12 presents the full results of the piece-rate variation. Increasing the piece rate from 5 Ksh
to 15 Ksh had no effect on output. One explanation consistent with this evidence is that even though we
attempted to calibrate the flat rates to compensate on average, income effects began to mitigate the piece
rate’s effectiveness as an incentive. Figure A10 shows some subjects did earn substantially more in the higher
piece rate conditions. For completeness, Table B13 and Table B14 present the results separately for noise
and quiet. Unfortunately the standard errors are too large to make any reliable comparisons between the
two conditions.
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studied in the literature (Table B9). This suggests that as policy makers consider priorities

in managing the explosive urbanization and industrialization of the developing world, they

should not neglect noise pollution. Even simple regulations such as limiting the volume of

car horns can prevent a race to the bottom that imposes costly externalities.

One caveat is that these estimates are necessarily specific to the noise and task combina-

tion at hand. While both were chosen in order to be representative, extrapolating to other

conditions should be done with caution. For example, the effects are likely to be much larger

in settings where communication is required and may be inhibited by background noise.

4 Experiment Two: Noise and Cognitive Function

While the evidence from experiment one demonstrates the potential importance of noise

pollution, it does not speak to the underlying mechanisms. Understanding whether noise

reduced productivity by impairing cognitive function or by reducing effort is useful for three

reasons. First, a significant new literature has argued that conditions associated with poverty

may impede cognitive function (Schilbach et al. 2016). Understanding whether these im-

pediments can significantly impact productivity by themselves is helpful in interpreting this

broader literature. Second, if the impact is through reduced motivation rather than impaired

task management skills, firms may be able to attenuate these effects through other means

of improving worker motivation. Finally, understanding the mechanism provides guidance

on how to extrapolate these effects to other tasks. If the effect operates through cognitive

function rather than effort, we should expect to be the most similar on tasks that use the

same levels of cognitive function. I use this second experiment to provide evidence on this

question by exposing individuals from the same population to the same noise change, while

having them complete assessments of cognitive function and a placebo effort task.

4.1 Design Overview

In order to examine the mechanisms in a credible way, I replicated the conditions of the first

experiment as closely as possible. I used the exact same recruiting procedure to recruit 213

participants split across 12 rounds (see Table B1 for a comparison of sample demographics).

These subjects were then invited to come to two similar rooms less than a mile away from the

TDC (see Figure A2 for a map of the locations). In the experiment I again generated random

schedules that assigned participants to spend half of their time in noise and half of their time

in quiet, and kept the number of participants in each room equal for each session (though

fewer per room this time because of a shortage of computers to run the assessments). Which
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room was noisy was also randomly assigned in the same way, by ensuring each room was noisy

for half the sessions in each round. Additionally, as in the first experiment, workers were

compensated by randomly assigned piece rate/flat rate combinations. Noise was generated

by an engine similar to the one used in the first experiment, with the same precautions to

avoid other environmental changes.

The main difference between the two experiments is in the timing. Due to logistical

constraints, the timing was a condensed version of experiment one (see Figure 3). Instead

of coming for ten days, subjects came for two days with three, two-hour sessions per day.

They spent the first session learning how to complete the cognitive tests, after which they

spent the remaining sessions working autonomously on the assessments being compensated

based on their performance. For the second through fifth sessions, I randomly assigned

each worker to spend half the sessions in noise and half in quiet. The final session was

used to elicit participant’s willingness to pay for quiet working conditions. As with the first

experiment, the combination of within-person randomization and minimal attrition (9.71%

of all scheduled sessions, not differential by treatment) results in close to perfect balance (see

Table B16 for balance tests).

4.2 Assessments and Measurement

Because there is no consensus among cognitive psychologists about the most important

measures of cognitive function and which are most likely to be relevant in this context, I

used a wide variety of tasks drawn from Dean et al. (2017), summarized in Table B15 (see

Appendix C for details). I programmed each task in an open-source, python-based platform

developed by Mathôt et al. (2012). Each task lasted approximately 10 minutes and was

completed once per session. The order of the tasks was randomly chosen for each individual

in each session. For each task, I developed a scoring rule that is a combination of the relevant

outcome measures (e.g. percentage correct and reaction time). Participants were then paid

based on their performance as measured by these scoring rules in combination with their

randomly assigned piece rates.

For analysis, I aggregate these individual test results into an index. Because the literature

thus far does not provide guidance on the production function mapping cognitive function

to productivity, my preferred index is the first factor of a common factor analysis of the

percentage correct and reaction times estimated using each individual’s first control session

(see Cudeck (2000) and Grice (2001) for details). This data-driven method assumes that

each measure mij of individual i on test j depends on cognitive function in the following
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linear relationship:

mij = bjψi + Σij (8)

where ψi is the cognitive function of individual i at time t, and Σij is a noise term. The

method uses an eigenvalue decomposition to construct a set of linearly-independent factors

that approximate the measures’ population covariance matrix. Assuming that all Σij are

independent of ψi and each other, any correlations between the measures can be attributed to

the latent variable ψi. Thus, the first factor, which explains the most covariance, is an index

of the only common factor ψi. For robustness, I also present the effects on the standardized

total number of points that served as the basis of the participants’ compensation19, the

average of the standardized point totals following Kling et al. (2007), and the first component

of a principal component analysis estimated on the same control data with similar results.

4.3 Results

4.3.1 Main Cognitive Results

As in the first experiment, treatment did not affect any environmental characteristics besides

the noise level in the room (Table 4). Moreover, the differences in average noise level between

treatment and control were also quite similar to those in experiment one (Figure 4).20 This

is useful because it allows me to use these results to understand the mechanisms at work in

the first experiment without strong functional form assumptions.

My preferred specification to estimate how noise affects cognitive function is the IV

using an indicator for being in a treated room as an instrument. I estimate that doubling

the perceived level of noise reduces performance on my preferred index by approximately

0.07σ (Table 5).21 This change does not appear to be driven by any particular domain

(Table B20).22 While this effect may seem small, it is important to recognize that the size of

the standard deviation is primarily driven by across-person differences (the R2 of a regression

of the index on individual fixed effects is 0.81). This implies that even substantial within-

19Subjects’ actual compensation also depended on their randomly assigned piece rate per point.
20Specifically, Table 1 and Table 4 show the first stage in the first experiment is 6.7 dB(A) while in the

second it’s 9.4 dB(A). This difference is less than the 3 dB(A) threshold commonly accepted as the minimum
change in sound level detectable by humans. It is perhaps surprising that 10 dB(A) is perceived as twice
as loud, but 3 dB(A) is barely noticeable. This is due to the logarithmic nature of the decibel scale in
combination with the operation of human hearing.

21The reduced-form effect of treatment, the IV using separate instruments for different treatment intensi-
ties, and Fisher p-values presented in Table B17, Table B18 and Table B19 yield similar inferences.

22This does not appear to be due to floor or ceiling effects, as most metrics generate good variation
(Figure A11).
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person shifts will appear small because the measure captures size relative to differences

between individuals.

While we should be cautious in comparing across experiments with different sets of assess-

ments scored and aggregated in different ways, these effect sizes are broadly comparable to

those induced by other cognitive impediments. For example, Lichand and Mani (2016) find

that a rainfall shock reduces performance on an index of cognitive tests by 0.041 standard de-

viations. Similarly, Park (2017) finds that a one standard deviation increase in temperature

reduces students’ exam scores by 0.052 standard deviations. However, the effect is substan-

tially smaller than the effects observed by Mani et al. (2013), who find that once-a-year

payments from sugar cane harvests increase performance by 0.67 standard deviations.

4.3.2 Alternative Mechanisms

The first potential alternative mechanism is that the noise level affects the technology of the

task. For example, if the task required coordination, the increased noise level would have

likely reduced productivity by impairing communication. As mentioned above, the task in

experiment one was chosen precisely because it does not require any kind of listening or

communication to avoid this issue. I further attempted to reduce the potential that noise

could affect the technology of the task by instructing participants in both conditions not

to talk to each other, and I randomized seat assignments to avoid participants becoming

friendly with their neighbors.

Another possible concern is that the noise level affected other inputs to an individual’s

performance; for example, by reducing motivation23 or impairing motor coordination. To

assess this possibility, participants in experiment two completed a placebo task, used by

DellaVigna and Pope (2018) to measure effort, where respondents had to alternate between

pressing the “a” and “b” keys on a keyboard for 10 minutes. This task was presented

during the same sessions as the cognitive tests and presented at a randomly chosen point

in the order.24 This task imposes as minimal of a demand on cognitive function as possible

while still requiring the other inputs needed for the sewing task like motivation and physical

coordination.25 The results presented in Table 5 show that effort did not change in response

23There are many reasons this might be the case. For example, one might think respondents are resentful
of the noise and decide to retaliate by reducing output. Alternatively, respondents might become discouraged
by struggling to perform in noise.

24One might be concerned about the relative precision of this task measure since it is a small fraction of
the total time. One way to assess this concern is to look at the within test correlation. If early performance
strongly predicts the final result, then we should be less concerned that the time is too short. A regression
of the final score on this effort task on the number of alterations completed at the halfway point yields an
R2 of 0.9.

25One might worry that this effort task seems less useful to the experimenter than the pockets and thus
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to the increase in noise. The point estimate suggests that doubling the noise level increases

the number of key presses by 1.9 relative to a control mean of 2192, and a decrease in

effort larger than 1.4% is outside of the 95% confidence interval. This level of precision is

sufficient to reject many of the effects on this task found by DellaVigna and Pope (2018).

For example, they find delaying payment by two weeks decreases key presses by 1.7%, a

probability weighting manipulation increases key presses by 4%, and increasing the piece

rate from 1 cent per 100 presses to 4 cents increases key presses by 5%. This lack of effort

response is also consistent with the results of the first experiment, where being in noise did

not reduce respondents’ willingness to stay and work an additional hour for a piece rate (see

Table B11).

4.3.3 Implied Importance of Cognitive Function for Productivity

If cognitive function is indeed the only channel through which noise affects productivity,

the combined results of the experiments suggest cognitive function is an important input to

productivity on this task. A relatively modest-sized, temporary shift in cognitive function is

responsible for an economically significant decrease in productivity. While the importance of

cognitive function to productivity varies from task to task, this implies policy makers should

take other environmental factors shown to inhibit these abilities seriously.

To illustrate, it’s useful to do some back-of-the-envelope calculations of what these results

imply for how large the potential consequences of these other impediments might be. Suppose

there was a single “return to cognitive function” parameter in the production function. If this

parameter existed, and we were comfortable assuming the only effect of noise on productivity

happens through cognitive function, it could be estimated with the ratio of the treatment

effect on productivity to the effect on cognitive function in a split-sample IV (Angrist and

Krueger 1992). In particular, for total pockets, this ratio would suggest a 79% change in

productivity for every one standard deviation change in my measure of cognitive function.

rates of retaliation might be lower. This is weighed against by the fact that the pockets were sewn onto
training scraps of fabric that were not intended to be sold. This limits the degree to which subjects in the first
experience perceived their output as benefiting the experimenter more than the effort task. Additionally, most
subjects at the end of both experiments expressed little annoyance with the noise on qualitative questions.
73% of subjects in the first experiment said they were not bothered at all or only slightly bothered by the
noise, and 76% of subjects in the second experiment rated the noise as a 5 or lower out of a possible 10 on
a scale of annoyance.
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5 Sorting and Efficiency

5.1 Motivation and Strategy

The combined evidence of my two experiments suggests that noise can have important im-

pacts on productivity by impeding cognitive function; however, this is not sufficient to con-

clude that the effects are relevant outside of an experimental setting. Whether workers

will respond to their decreased productivity by either sorting into sectors where they are

more productive, or by demanding additional compensation, depends on whether workers

are aware of the impacts noise has on their productivity.

Measuring individuals’ awareness of the impacts of noise also provides an opportunity to

contribute evidence on the more general question of whether individuals act strategically to

protect their cognitive function from environmental impediments. Without understanding

this level of sophistication, it’s difficult to assess the economic implications of controlled

experiments demonstrating the effects of environmental stimuli associated with poverty (see

Dean et al. (2017) for an overview). If individuals are generally aware of what situations

impair their productivity or decision-making, the substantial effects observed in controlled

experiments might be significantly attenuated by adaptation in the real-world. On the other

hand, if individuals do not understand these effects, they might cause significant inefficiencies.

I assess awareness by offering participants at the end of both experiments the chance

to pay for quiet working conditions and randomly vary whether their compensation will

depend on their performance. Specifically, workers in the non-performance pay condition of

both experiments were paid 200 Ksh for the session while workers in the performance pay

condition were paid the highest piece rate included in the experiment (15 Ksh per perfect

pocket in the first experiment and 4 Ksh per point in the second) in addition to flat rates

calibrated to yield total pay of approximately 200 Ksh.26 If participants are aware that noise

reduces productivity, they should be more willing to pay for quiet when they will recoup

a portion of the investment through increased performance pay. For example, the median

worker in my study produced 14 pockets in quiet during the non-WTP sessions of the final

two days. If they realize working in noisy conditions will reduce their productivity by 3%,

when they are facing a 15 Ksh piece rate they should be willing to pay about 6 Ksh more to

work in quiet than when facing a pure flat rate.

26In the first experiment, for each of the two days over which WTP was elicited, one of the two sessions
was chosen for the worker to be compensated by 15 Ksh piece rate, flat rate combination while the other was
compensated by a pure 200 Ksh flat rate. For logistical simplicity, in the second experiment individuals have
their willingness to pay elicited for a single session under the possibilities of being paid a piece rate based on
their score and a 200 Ksh flat rate. They are told that one of their choices will be randomly implemented.
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5.2 Elicitation Procedure

I elicit willingness to pay for quiet working conditions with a modified version of Becker

et al. (1964) following the approach of Berry et al. (2015) as outlined in Figure A12 using

the script in Appendix D. In this incentive-compatible task, respondents state the maximum

that they are willing to pay for a good, after which a random price is drawn. If the price is

below the respondent’s willingness to pay, he/she purchases the good at the random price,

and if the price is above the willingness to pay, the respondent does not purchase the good.

I begin with a slight modification to the procedure by employing a binary search over

the range 0-200 Ksh to identify the respondent’s maximum willingness to pay rather than

beginning by asking the open-ended question, “How much is the most you’re willing to

pay?”.27 This procedure makes the task as concrete as possible, avoids the respondent

needing to engage in contingent reasoning and narrows to a final number in only eight

questions.28 In order to ensure understanding, after finalizing a maximum willingness to

pay, respondents must correctly answer verification questions, and they practice the entire

procedure for a lollipop. I also avoid potential issues with credit constraints, time preferences

and compliance by deducting any charges from respondents’ earnings in the future session

where they will have paid to be in quiet.

This elicitation procedure appears to work well in this context. In this sample, in spite of

the multiple opportunities, almost no respondents ever change their willingness to pay after

the binary search (fewer than 2% of respondents in the first experiment and zero respondents

in the second). Additionally, the practice exercise elicits a sensible demand curve for the

lollipops. Median WTP is around 5 Ksh ($0.05) in the first experiment and 10 Ksh ($0.10)

in the second, and the means are 9.4 Ksh and 9.6 Ksh respectively.

Subsequent work in the same context provides further evidence of comprehension. Berk-

ouwer and Dean (2019) use the same elicitation method and script with a sample of 1000

low-income households in Nairobi. In that sample, the mechanism is evaluated by randomiz-

ing which of two consumer goods will be used to practice the BDM at the respondent level.

The good not chosen is then offered at a randomly chosen take it or leave it price. Figure A13

27For example, the respondent is first asked “If the random price is 100 Ksh would you want to pay to
work in quiet?” If they respond no, they are then asked “If the random price is 50 Ksh would you be willing
to pay to work in quiet?” If they respond no again, they’re asked about a random price of 25 Ksh and so on
until the search narrows to a single number.

28One might be concerned about anchoring effects with this procedure. Weighing against this concern is
the Berkouwer and Dean (2019) evidence discussed below showing the procedure leads to similar demand
curves as those elicited by take it or leave it offers. Additionally, if anything, because the search begins
at 100 Ksh, these anchors would lead to higher valuations while respondents provide very low valuations
throughout. Finally, while anchoring may affect the level of the willingness to pay, it is less clear why it
would affect the difference in willingness to pay based on the compensation scheme.
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shows the demand curves are strikingly similar across the two different methods of elicitation

and give reasonable values given the market prices of the goods. Moreover, 97% of those

respondents answer two comprehension checks correctly providing further confidence in the

results.

5.3 Willingness to Pay Results

The histograms presented in Figure A14 demonstrate that willingness to pay for quiet is

extremely low, even before trying to separate the willingness due to productivity concerns

from that due to disutility. The median willingness to pay is only 2 Ksh ($0.02) in the

first experiment and 0 Ksh in the second experiment. These low levels of willingness to pay

provides some assurance that workers do not appreciate the impact of noise in addition to

the test using the random variation in the compensation scheme. These low valuations of

quiet are also in line with participants’ stated levels of annoyance with the noise as measured

on the exit survey. 73% of subjects in the first experiment said they were not bothered at all

or only slightly bothered by the noise, and 76% of subjects in the second experiment rated

the noise as a 5 or lower out of a possible 10 on a scale of annoyance.

Nonetheless, it is possible that individuals are at least partially aware of the productivity

effect and are willing to pay more for quiet when facing a piece rate. To test this possibility,

I regress the level of willingness to pay, an indicator for being willing to pay a positive

amount, and the level of willingness to pay after restricting to strictly positive amounts on

an indicator for whether the respondent was offered a piece rate or a flat rate with standard

errors clustered at the individual level.29 Willingness to pay is essentially non-responsive to

the piece rate, with any increase greater than 3.5 Ksh lying outside of the 95% confidence

interval (Table 7). For comparison, the median level of productivity from the piece-rate

compensated individuals in the quiet room in the non-WTP sessions of days 9 and 10 is 14

pockets, combined with the reduced form effect of a 3% decrease in productivity and a piece

rate of 15 Ksh, the respondent’s break-even willingness to pay should be around 6 Ksh.

There are several possible explanations for this lack of response. The first is that for

many individuals the effect of noise is relatively small, so they may not notice it, or I may

not be powered to detect their responses. I assess this possibility by estimating how much

more each individual is likely to earn in the quiet working conditions and testing whether

those with the most to gain are responsive to the wage structure. To do so, I estimate

individual-level treatment effects using the following hierarchical linear model:

29Willingness to pay after restricting to only positive amounts is a potentially problematic outcome because
it involves selecting the sample on the dependent variable; however, in this case, the specification serves to
show that the subsample does not behave differently than the complete sample.
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In principle, instead of using this model to estimate the within-person treatment effect,

one could take the simple difference between treatment and control performance within

an individual. However, because I have few observations for each individual, this would

lead to imprecise estimates. Imprecision is especially concerning in this context because

the hypothesis of interest is whether the interaction between the wage condition and an

individual’s value of quiet is zero and including an imprecisely-estimated, right-hand-side

variable would create attenuation bias. The hierarchical model yields more precise individual

estimates by engaging in partial pooling. This is analogous to the approach used by Chetty

et al. (2014) and Kane and Staiger (2008) to evaluate a teacher’s value added. Figure A16

shows that the model appears to fit the data well and strongly predicts the out-of-sample,

realized outcomes in the willingness-to-pay sessions. To improve the interpretability of these

estimates, I multiply the estimated change in productivity induced by noisy conditions by

the piece rate to yield a monetary value of quiet working conditions for each individual. The

distribution of estimated productive values of quiet shown in Figure A15 has significant mass

beyond the 95% confidence interval of the response to the piece rate estimated above.30

To test for differential responses among those for whom quiet is most valuable, I re-

estimate the willingness to pay regressions while interacting the individual-level estimates

of the value of quiet with an indicator for being compensated with a piece rate. If indi-

viduals for whom quiet is most valuable respond more to the piece rate, the effect should

manifest itself in the interaction term. Table 8 shows this is not the case. In particular,

consider the benchmark case of perfectly rational, risk-neutral individuals who understand

how noise affects their productivity. For these individuals, if the prediction were perfect,

the interaction term should be one as switching to performance pay should increase their

maximum willingness to pay by the additional amount that they will earn through increased

productivity.31 I can reject this benchmark for both experiment one and experiment two at

30It is worth noting that these estimates suggest some subjects are more productive in noise. This is
possible, however, it is also possible that this is the result of insufficient observations per subject.

31Note that if some individuals are actually more productive in noise, we would no longer expect the
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the 10% and 5% confidence levels, respectively.32

Another potential explanation for this lack of response is that the possible productive

gains from quiet are not “top-of-mind” for the participants so they do not consider it when

making their decisions. To assess this possibility, in experiment two I elicited respondents’

beliefs about their future scores if they worked in quiet and if they worked in noise following

Delavande (2014). Specifically, respondents were asked to distribute ten beans across the

ten bins of possible scores for each of the four possible compensation scheme and noise level

combinations. Half of the respondents were randomly chosen to provide their beliefs before

stating their willingness to pay, while the other half provided their beliefs afterward. If the

lack of demand response is due to this simple form of inattention, then those who were

forced to think through their beliefs before stating their willingness to pay should be more

responsive to the piece rate. The results shown in Table 9 show that this is not the case. I

can reject a positive response at the 5% confidence level for the level of willingness to pay

and at the 10% level for the extensive margin of being willing to pay anything.

A final possibility is that individuals have incorrect or imprecise beliefs about the impact

that noise will have on their productivity. I test for this possibility using the means of

the belief distributions collected in experiment two. The results are presented in Table 10.

Columns 1 and 2 test whether beliefs are at least correct on average by comparing the

predictive power of the mean of a respondent’s relevant belief distribution to the predictive

power of the model’s predictions. While individuals’ beliefs are reasonably predictive, they

are significantly outperformed by the model. In column 3, I then compare what the data

predicts an individual’s income gain from working in quiet would be to what the participant

predicted and find that they are essentially unrelated, suggesting individuals hold incorrect

beliefs about the impact of noise on their productivity. This then raises the natural question

of whether individuals were deciding their willingness to pay based on their incorrect beliefs.

I test this possibility in columns 4-6 by interacting respondents’ predictions of their income

gain from quiet with the piece-rate indicator. I find that even those who stated that they

believe they are more productive in quiet do not respond to the piece rate.33 I can reject the

benchmark case of increasing their willingness to pay one-for-one with their stated beliefs

about the value of quiet at the less than 1% confidence level. Thus, the workers both had

coefficient to be one because individuals cannot pay less than zero. This is a potential concern for experiment
two, although it is still a useful benchmark.

32Note that this is not the case simply because those affected by noise are generally unproductive (and
thus are not concerned with the compensation scheme). The model predicts that the treatment effect is
in fact more negative for those that are more productive (with a correlation coefficient of -0.52). Thus, if
anything, they should care more because they both stand to lose more in a proportional sense and because
this proportional loss translates into a greater monetary loss due to their greater productivity.

33Experiment one’s belief data is not as detailed but is consistent with these findings (Table B21).
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very little concept of how noise affects their productivity and, to the extent that they were

willing to express beliefs, they were not willing to stake any money on those beliefs being

correct.

One explanation consistent with this evidence is that respondents failed to notice the

impact that noise has on their productivity (Hanna et al. 2014; Schwartzstein 2014). In this

model individuals are Bayesians with two-level hierarchical beliefs about their productivity.

At the higher level, individuals decide which variables to notice. Subsequently, at the lower

level, individuals form beliefs about the productive impact of the variables that they noticed.

The key feature of the model is that when a variable is unobserved, individuals do not attempt

to infer its missing value and instead assume it to be constant. In this model, if workers fail

to attend to noise, they will still have reasonably accurate beliefs about their ability, but their

beliefs about the impact noise has on their productivity will be wrong. Moreover, individuals

will realize that they do not understand the impact that noise has on their productivity, and

they will be unwilling to stake any money on their stated beliefs. This is consistent with the

pattern of effects described above; however, this experiment was not designed to test this

model directly and other explanations may also be consistent with the results.34

As with the main results, it is important to note these results may be specific to the

setting. For example, in another task that requires communication, having difficulty hearing

a coworker may prompt some workers to notice the effects of noise. Additionally, given that

the noise levels in both rooms are less than a typical factory for ethical reasons, it’s possible

workers did not see the need to reduce the noise level further. A final possibility is that given

more time, workers would form correct beliefs about the effects of noise on their productivity.

Productivity is a relatively random outcome and it may simply be difficult for respondents

to infer treatment effects over the time period of the experiment. Additionally, participants

were paid at the end of the day (as they would be in a real workplace) which requires them

to track their output on their own rather than relying on their take-home pay as a summary

statistic.

However, in other ways the experiment is an ideal learning environment. Respondents

complete the exact same task with minimal other changes to their environment besides

variation in the noise level in quick succession. Specifically, they spend exactly half of their

time in noise and in quiet (10 sessions per condition in the first experiment and 2 in the

second). Given that they do not learn in this setting of experimental variation, there is

reason for caution in hoping that they will learn in the real world even though their time

34Additionally, respondents’ stated beliefs are suspiciously similar to their stated levels of annoyance (see
Figure A17). This is what we would expect in a world where respondents do not understand the impact
that noise has on their productivity, and instead provide something that they do understand, namely how
annoying they find noise.
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in the experiment was relatively short. Moreover, because the sample is used to working

in noisy settings, they are not beginning to learn the effects completely from scratch in the

experiment. This experience should aid the learning process unless a large component of

the effect of noise is task specific. If that is the case, however, we should also be skeptical

that workers are sorting efficiently because learning would require extended exposure to each

possible task with varying levels of noise, which seems unlikely to occur.

5.4 Efficiency Implications

As discussed in the conceptual framework, if piece-rate workers neglect the impact of noise

on their productivity they will be too willing to work in noisy jobs and fail to demand ad-

ditional compensation for the decrease in productivity induced by the work environment.

Additionally, depending on the correlation between the disutility of noise and its productive

impacts, the composition of workers sorting into the noisy sector may deviate from the effi-

cient allocation. This sorting is particularly important because the costs of noise abatement

are known to be highly heterogeneous, as are the productive effects I estimate.

To obtain an estimate of this correlation, I compare how much subjects were willing to

pay for quiet when they were not being compensated based on their performance (a measure

of disutility) and the estimated within-person treatment effects. Figure A18 shows the joint

density of the two variables. At least in this experiment, with these measures, disutility and

productivity losses appear to be unrelated. This suggests that the composition of workers

sorting into noisy work environments could be significantly altered by workers neglecting the

productive impact of noise.

More generally, many of the cognitive impediments studied in the literature have both

productivity and disutility components. For example, it is unpleasant to be hot and high

temperatures also reduce productivity. This exercise demonstrates that in order to under-

stand the efficiency implications of these impediments, it is important to understand the joint

distribution of workplace amenities and cognitive impediments, and how workers attend to

each aspect.

An additional important determinant of the welfare consequences of these results is

whether firms are aware of the effects of noise and optimally abate. While assessing the

degree to which this is true is beyond the scope of this paper, there are at least two reasons

to be concerned this may not be the case. First, Bloom et al. (2013) demonstrates that

even seemingly obvious management practices, such as sorting thread by color, is neglected

by some major textile manufactures. Second, noise levels do not typically vary exogenously

which makes it a difficult task for managers to infer the causal effect and adjust appropriately.
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Future work should assess the degree to which this is true.

6 Conclusion

This paper presents evidence that an increase of 10 dB inhibits cognitive function, but not

effort, and that this results in a decrease in productivity of approximately 5%. Individuals

do not seem to be aware of these effects, and those most affected are not the same as

those who are the most irritated by noise. Together these results demonstrate there may be

inefficiencies in the labor market surrounding noisy work environments. Workers may fail

to either sort into quieter locations where they are more productive or demand additional

compensation per unit of output. The composition of workers sorting into noisy occupations

may deviate from the efficient optimum.

Beyond the labor market effects, these results also raise concerns about the impact of

noise pollution more generally. As the developing world continues to become more urban

and wealthy, noise pollution is destined to spread even further. Between 2001 and 2015,

the number of cars per person in India tripled, and this growth shows no signs of slowing

(Government of India 2017). While this should be celebrated as a sign of progress, it will

undoubtedly bring with it even more noise pollution. The results in this paper suggest this is

a potential policy problem that warrants both further research and policy makers’ attention.

While eliminating noise pollution is likely an unrealistic goal, there are steps that gov-

ernments can take to mitigate the problem. First, governments can follow the lead of the

European Union and collect comprehensive data on noise exposure. The current state of

data requires researchers and policy makers to rely on proxies, data from specific locations,

and a general sense of “loudness”. Being able to quantify exposures and understand the

types of people who are exposed would be a significant step forward. Second, many sources

of urban noise stem from competition to be heard. For example, there is no intrinsic need

for extra-loud car horns; rather, they are needed because other drivers have loud car horns.

This creates an inefficient race to the bottom. Regulating these sources could likely reduce

noise levels without incurring any significant efficiency costs. Finally, governments or NGOs

can try to raise awareness among workers and firms about the potential effects of noise on

productivity. If the failure to respond to incentives is actually due to a failure to notice,

calling attention to this problem is likely a way to improve outcomes at a minimal cost.

More generally, these results suggest that policy makers should take the impact that

cognitive impediments can have on economic outcomes seriously. If the effect of cognitive

function on productivity is as large as it seems to be, then policies and environments that

tax the poor’s cognitive resources may have serious economic costs. Moreover, if individuals’
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apparent lack of awareness of the impact of noise generalizes to other impediments, this

suggests the potential for significant inefficiencies. Future research should provide estimates

of these costs and how policies can be designed that account for these cognitive constraints.
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Figure 1: Experiment One Timing
Note: This figure shows the timing of the first experiment. Panel A shows the course level overview. On the
first two days participants received basic training, in quiet, on how to use a sewing machine and how to sew a
pocket. Over the next six days participants worked autonomously for a piece rate/flat rate combination while
being randomly exposed to noise. On the last two days respondents had the opportunity to pay in order to
work in quiet while I randomly varied their performance incentives. Panel B shows the day level overview.
On each day participants worked for three sessions separated by breaks to isolate the contemporaneous effects
of noise.
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Figure 2: Example Pocket with Marked Grading Criteria
Note: This figure shows an example of the pockets produced in experiment one. Pockets were chosen as
the incentivized production task because they require all of the basic skills that are needed in sewing and
can be completed in a short period of time, allowing for repeated observation. In fact, the TDC uses these
pockets as tools to evaluate potential hires for these reasons. Pocket quality is assessed by treatment-blind
enumerators according to the following six criteria marked in the figure:

1. Are there double stitches around the pocket?

2. Is the outer stitch uniformly 1 mm from the edge?

3. Is the inner stitch uniformly 6 mm from the edge?

4. Is the top of the pocket correctly hemmed?

5. Are the ends of the seams reversed?

6. Are the corners even and continuous?
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Figure 3: Experiment Two Timing
Note: This figure shows the timing outline of the second experiment. The timing was intentionally designed
to follow that of experiment one as closely as possible. The one substantial departure was that instead
of happening over two weeks, the second experiment happened over two days due to logistical constraints.
Participants still had a training session in quiet and then worked autonomously in sessions separated by
breaks.
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Figure 4: Difference in Noise Level Between Treatment and Control
Note: This figure shows the density of the session-level difference between average treatment and average
control noise levels for both experiments. Because humans perceive a 10 dB increase as twice as loud, all
noise levels are presented in 10s of decibels. The figure shows that treatment is equivalent to going from
working with a home dishwasher in the background to having a home vacuum cleaner in the background.
The difference between the two experiments is less than the 3dB threshold that’s considered “just detectable”
by human ears (Murphy and King 2014).

42



Tables

Table 1: Environmental Effects of Treatment in Experiment One

(1) (2) (3) (4)
Noise Level CO2 Humidity Temperature

Treatment 0.674∗∗∗ 4.765 0.038 0.048
(0.036) (24.678) (0.450) (0.175)

Session FE Yes Yes Yes Yes
Room FE Yes Yes Yes Yes

Control Mean 6.892 624.677 42.474 26.547
Normalized Difference 2.462 0.072 0.004 0.009
Observations 157 153 153 153

Note: This table shows regressions of environmental variables on a treatment indicator, session fixed effects,
and room fixed effects with robust standard errors. The normalized difference is the difference between the
treatment and control means divided by the square root of the average of the treatment and control variances
as defined by Imbens and Rubin (2015). Because an increase of 10 dB is perceived by the human ear as
twice as loud, all noise levels are reported in 10s of decibels. CO2 is reported in parts per million, humidity
is reported in raw percent, and temperature is reported in degrees Celsius. The results demonstrate that
treatment only affected the noise level and that other environmental variables potentially affected by the
machine such as pollution and temperature were unaffected.

Table 2: Effect of Treatment on Productivity

(1) (2) (3) (4) (5) (6) (7) (8)

Total
Pockets

Total
Points
Earned

Pockets
Meeting

1 Criterion

Pockets
Meeting

2 Criteria

Pockets
Meeting

3 Criteria

Pockets
Meeting

4 Criteria

Pockets
Meeting

5 Criteria

Pockets
Meeting

6 Criteria

Inverse Hyperbolic Sine Transformation

Treatment −0.0311∗∗∗ −0.0425∗∗∗ −0.0315∗∗∗ −0.0378∗∗∗ −0.0570∗∗∗ −0.0597∗∗∗ −0.0450∗∗ −0.0137
(0.0118) (0.0134) (0.0117) (0.0113) (0.0145) (0.0179) (0.0182) (0.0189)

Levels

Treatment −0.2289∗ −1.1985∗ −0.2184∗ −0.2313∗ −0.2503∗ −0.2493∗ −0.2061 −0.0430
(0.1275) (0.7199) (0.1273) (0.1252) (0.1277) (0.1273) (0.1267) (0.1189)

Wage FE Yes Yes Yes Yes Yes Yes Yes Yes
Session FE Yes Yes Yes Yes Yes Yes Yes Yes
Person FE Yes Yes Yes Yes Yes Yes Yes Yes
Room FE Yes Yes Yes Yes Yes Yes Yes Yes

Control Mean-IHS 2.924 4.487 2.918 2.901 2.775 2.645 2.529 2.163
Control Median-Levels 10 54 10 10 10 9 9 6
Observations 2447 2447 2447 2447 2447 2447 2447 2447

Note: This table shows ordinary least squares regressions of productivity outcome variables on a treatment
indicator, wage, session, person, and room fixed effects with standard errors clustered at the room by session
level. The first panel shows the results for the inverse hyperbolic sine-transformed outcomes while the second
panel shows the results for the untransformed outcomes. The results demonstrate that noise significantly
reduced productivity. In particular, respondents in treated rooms (those working with the background noise
of a vacuum instead of a dishwasher) made approximately 3% fewer pockets.
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Table 3: IV Effect of Noise on Productivity – Treatment Indicator Instrument

(1) (2) (3) (4) (5) (6) (7) (8)

Total
Pockets

Total
Points
Earned

Pockets
Meeting

1 Criterion

Pockets
Meeting

2 Criteria

Pockets
Meeting

3 Criteria

Pockets
Meeting

4 Criteria

Pockets
Meeting

5 Criteria

Pockets
Meeting

6 Criteria

Inverse Hyperbolic Sine Transformation

Noise Level −0.0534∗∗∗ −0.0617∗∗∗ −0.0537∗∗∗ −0.0578∗∗∗ −0.0800∗∗∗ −0.0822∗∗∗ −0.0642∗∗ −0.0193
(0.0161) (0.0187) (0.0160) (0.0160) (0.0202) (0.0249) (0.0256) (0.0270)

Levels

Noise Level −0.3969∗∗ −1.9737∗ −0.3876∗∗ −0.3844∗∗ −0.3935∗∗ −0.3985∗∗ −0.3305∗ −0.0792
(0.1786) (1.0172) (0.1785) (0.1775) (0.1810) (0.1786) (0.1777) (0.1730)

Wage FE Yes Yes Yes Yes Yes Yes Yes Yes
Session FE Yes Yes Yes Yes Yes Yes Yes Yes
Person FE Yes Yes Yes Yes Yes Yes Yes Yes
Room FE Yes Yes Yes Yes Yes Yes Yes Yes

Control Mean-IHS 2.924 4.487 2.918 2.901 2.775 2.645 2.529 2.163
Control Median-Levels 10 54 10 10 10 9 9 6
Observations 2400 2400 2400 2400 2400 2400 2400 2400

Note: This table shows estimates from a two stage least squares regression of productivity outcome variables
on the noise level, wage, session, person, and room fixed effects with standard errors clustered at the room by
session level. The noise level is instrumented with an indicator for being in a treated room. The first panel
shows the results for the inverse hyperbolic sine-transformed outcomes, while the second panel shows the
results for the untransformed outcomes. The results demonstrate a 10 dB change (perceived by the human
ear as twice as loud) reduces productivity by approximately 5%.

Table 4: Environmental Effects of Treatment in Experiment Two

(1) (2) (3) (4)
Noise Level CO2 Humidity Temperature

Treatment 0.938∗∗∗ −47.956 −0.552∗ −0.041
(0.049) (46.633) (0.295) (0.113)

Session FE Yes Yes Yes Yes
Room FE Yes Yes Yes Yes

Control Mean 7.206 924.460 47.447 24.433
Normalized Difference 3.155 −0.154 −0.127 0.029
Observations 88 84 84 84

Note: This table shows regressions of environmental variables on a treatment indicator, session fixed effects,
and room fixed effects with robust standard errors. The normalized difference is the difference between the
treatment and control means divided by the square root of the average of the treatment and control variances
as defined by Imbens and Rubin (2015). Noise level is reported in 10s of dB, CO2 is reported in parts per
million, humidity is reported in raw percent, and temperature is reported in degrees Celsius. The results
show that the noise change was similar to the change in the first experiment and that no other environmental
variables were affected by treatment.
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Table 5: Effect of Noise on Cognitive Function and Effort – Treatment Indicator Instrument

Cognitive Function Tests Placebo Effort Task

(1) (2) (3) (4) (5) (6)

Normalized
Sum of Scores

Average of
Normalized Scores

PCA of
Percent Correct

and Reaction Time

CFA of
Percentage Correct
and Reaction Time

Key Presses Normalized Score

Noise Level −0.0323∗∗∗ −0.0254∗∗∗ −0.0626∗∗∗ −0.0676∗∗∗ 1.9391 0.0041
(0.0113) (0.0083) (0.0150) (0.0175) (16.6155) (0.0355)

Wage FE Yes Yes Yes Yes Yes Yes
Session FE Yes Yes Yes Yes Yes Yes
Person FE Yes Yes Yes Yes Yes Yes
Room FE Yes Yes Yes Yes Yes Yes

Control Mean 0.000 0.000 -0.000 0.000 2192.013 -0.000
Observations 762 762 762 762 762 762

Note: This table shows estimates from a two-stage least squares regression of cognitive outcome and placebo
effort task variables on the noise level, wage, session, person, and room fixed effects with standard errors
clustered at the room by session level. The noise level is instrumented by an indicator for being in a treated
room. The first outcome is the normalized sum of points that participants earned on tests during a session.
The second column normalizes first at the test-score level and averages across normalized scores within a
session. The third outcome is the first component of a principal component analysis of percentage correct
and reaction time estimated on each individual’s first control session. The fourth column is my preferred
outcome: the first factor of a common factor analysis of percentage correct and reaction time estimated on
each individual’s first control session. The results show that a 10 dB increase in the noise level (perceived
as twice as loud) reduces performance on my preferred index by 0.07 standard deviations. The last two
columns show that there was no effect of the same noise change on the placebo effort task. Any decrease in
performance greater than 1.4% is outside of the 95% confidence interval.

Table 6: Implications for Cognitive Effects in the Literature

Source Stimulus
Change

in Stimulus
Cognitive

Effect

Implied
Productivity

Change

Ebenstein et al. (2016) PM2.5 10 index units 0.017σ 1.34%

Park (2017) Temperature 1σ 0.052σ 4.11%

Lichand and Mani (2016) Low Rainfall < 30th percentile 0.041σ 3.24%

Mani et al. (2013) Harvest 0.67σ 53%

Note: This table combines the results of several studies’ estimates of the impact of different environmental
conditions on cognitive function with the estimate from my split-sample IV in order to assess what these
impediments might mean for productivity. While the results should be interpreted with caution given that
they involve different types of cognitive shifts and those exposed are likely doing different types of tasks,
they indicate that cognitive impediments have the potential to have economically meaningful effects
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Table 7: Willingness to Pay by Compensation Scheme

Experiment 1 Experiment 2

(1) (2) (3) (4) (5) (6)
WTP WTP Any WTP COP WTP WTP Any WTP COP

Piece Rate 0.4202 0.0000 0.7812 0.3066 0.0377∗ −3.6531
(1.4553) (0.0189) (2.3519) (1.6045) (0.0221) (4.2607)

Day FE Yes Yes Yes No No No

Outcome Mean 17.697 0.538 32.906 13.392 0.316 42.373
Observations 476 476 256 424 424 142

Note: This table shows a regression of willingness to pay, an indicator for being willing to pay a positive
amount, and willingness to pay for the subsample that are willing to pay a positive amount on an indicator
for whether the respondent was facing a piece rate when the willingness to pay was elicited. Because in
experiment one willingness to pay was elicited on two different days, the regressions include day fixed effects.
Standard errors are clustered at the individual level. The results show that individuals’ willingness to pay
for quiet does not depend on the wage structure. This suggests that they neglect the productive impacts of
noise.

Table 8: Response to Piece Rate by Productive Value of Quiet

Experiment 1 Experiment 2

(1) (2) (3) (4) (5) (6)
WTP WTP Any WTP COP WTP WTP Any WTP COP

Piece Rate −1.5874 −0.0225 −1.4565 0.7110 0.0431∗ −2.5101
(2.5186) (0.0311) (3.7060) (1.6572) (0.0235) (5.1276)

Model Predicted −0.5297 −0.0075 −0.6834 1.6734∗∗ 0.0189∗ 2.9648∗

Income Gain (0.5794) (0.0085) (0.9689) (0.7200) (0.0111) (1.7303)

Model Predicted 0.3746 0.0042 0.4514 −0.3504 −0.0047 −0.5879
Income Gain × Piece Rate (0.3580) (0.0036) (0.6441) (0.4441) (0.0076) (1.3279)

Day FE Yes Yes Yes No No No

Outcome Mean 17.697 0.538 32.906 13.392 0.316 42.373
Observations 476 476 256 420 420 138

Note: This table shows a regression of willingness to pay, an indicator for being willing to pay a positive
amount, and willingness to pay for the subsample that are willing to pay a positive amount on an indicator
for whether the respondent was facing a piece rate when the willingness to pay was elicited, how much more
the model predicts the individual would make in quiet and their interaction. Because in experiment one
willingness to pay was elicited on two different days, the regressions include day fixed effects. Standard
errors are clustered at the individual level. The results show that even the willingness to pay of those who
benefit the most from quiet is unresponsive to performance incentives.
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Table 9: Testing Prompting Consideration of Noise

(1) (2) (3)
WTP WTP Any WTP COP

Piece Rate 3.3905 0.0667∗ 2.5523
(2.3536) (0.0339) (6.5711)

Asked Beliefs Before 5.3799 0.0601 9.0658
WTP (4.1393) (0.0641) (9.9233)

Asked Beliefs Before −6.1101∗ −0.0573 −11.4321
WTP × Piece Rate (3.1913) (0.0441) (8.4494)

Outcome Mean 13.392 0.316 42.373
Observations 424 424 142

Note: This table shows a regression of willingness to pay, an indicator for being willing to pay a positive
amount, and willingness to pay for the subsample willing to pay a positive amount on an indicator for whether
the respondent was facing a piece rate when the willingness to pay was elicited, whether the respondent gave
their beliefs before their willingness to pay, and their interaction. The results show that even when forced to
think through the impact noise has on their productivity, respondents’ willingness to pay is unchanged by
the piece rate. This argues against the idea that willingness to pay does not respond to the wage structure
because noise was simply not “top-of-mind”. Standard errors are clustered at the individual level.

Table 10: Testing for Incorrect Beliefs

(1) (2) (3) (4) (5) (6)

Realized Score Realized Score
Model Predicted

Income Gain
WTP WTP Any WTP COP

Model Predicted 0.9986∗∗∗

Score (0.0273)

Participant 0.1535∗∗∗

Predicted Score (0.0468)

Participant −0.0031 0.0558∗ 0.0011∗∗ 0.0381
Predicted Income Gain (0.0034) (0.0331) (0.0006) (0.1237)

Piece Rate 0.3796 0.0509∗∗ −7.3685
(1.5761) (0.0221) (5.1188)

Participant −0.0042 −0.0008∗ 0.1936∗

Predicted Income Gain × Piece Rate (0.0143) (0.0004) (0.1041)

Outcome Mean 33.929 33.929 1.078 13.392 0.316 42.373
Observations 187 187 210 424 424 142

Note: Columns one and two of this table show a regression of each respondent’s realized score on the model’s
predictions and their predictions, respectively. The results show respondents’ beliefs have some predictive
power over their future scores, but are not as predictive as the model. Column three shows a regression of
the model’s predicted value of quiet on the respondents’ predicted value of quiet. The result shows that
individuals’ beliefs about the impact of noise on their productivity is uncorrelated with my estimates of the
true impact of noise on their productivity, suggesting their beliefs are incorrect. Columns four, five, and six
show regressions of willingness to pay, an indicator for being willing to pay a positive amount, and willingness
to pay for the subsample willing to pay a positive amount on an indicator for whether the respondent was
facing a piece rate when the willingness to pay was elicited, what the respondent believes to be his/her
productive benefit from working in quiet, and their interaction. The results show that respondents are
unwilling to stake any money on their beliefs. These results are consistent with a “failure to notice” form
of inattention where respondents fail to learn about particular determinants of their productivity, but are
aware that they do not know (Schwartzstein 2014; Hanna et al. 2014). Standard errors are clustered at the
individual level.
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A Supplementary Figures For Online Publication
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Figure A1: Average Hearing Loss in Cities by Income
Note: This figure shows the relationship between hearing loss and income at a city level. The y-axis plots
years of hearing loss in excess of what would be expected based solely on age as measured by Mimi (2017).
The x-axis plots the city’s income per capita as estimated by Berube et al. (2014). The size of each circle
is proportional to the population of each city. In the absence of representative data on noise levels, the
relationship between hearing loss and income provides evidence that those in poorer cities are exposed to
more noise than those in comparable richer cities.
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Figure A2: Experiment Locations and Surrounding Area
Note: This figure shows a map of the experiment locations and recruitment location in Kitengela, Kenya
just outside of Nairobi. The experiment sites are less than a mile apart and close to the recruitment site at
the gates of the local textile factories.
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Figure A3: Noise Generating Engine
Note: This figure shows a picture of the car engine used to generate noise in experiment one. The engine was
borrowed from an automotive mechanic training facility at the TDC. A car engine was chosen as the noise
source because it is representative of important sources of noise pollution – traffic noise and large industrial
machines – and leaves minimal room for experimenter manipulation.
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Figure A4: Noise Level By Treatment Status
Note: This figure shows the average noise level in treatment and control. A noise increase of 10 dB is
perceived as twice as loud by the human year. Thus, for interpretability, all noise levels are reported as 10s
of decibels and the y-axis is shown on a log scale. Treatment increased the noise level by the same amount
as replacing a dishwasher running in the background with a vacuum cleaner.
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Figure A5: Output Density
Note: This figure shows the density of the number of total and perfect pockets created in experiment one. The
distribution is significantly skewed, but has zeros. Thus, to increase power I present the inverse hyperbolic
sine-transformed versions of the outcome variables.
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Figure A6: Output Trends
Note: This figure shows the median number of total and perfect pockets created in experiment one per day.
The figure demonstrates the floor effect issues with the perfect pockets outcome during the first week.
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Figure A7: Instrumented Treatment Effects by Ability
Note: This figure shows coefficient estimates and their 95% confidence intervals from a two-stage least
squares regression of productivity outcome variables on the noise level, wage, session, person, and room
fixed effects with standard errors clustered at the room by session level. The noise level is instrumented
by an indicator for being in a treated room. Before estimation, within each session the sample was split
by median performance in other control sessions. Treatment effects were estimated separately for the two
groups in a stacked regression. The results show that the treatment effect is relatively constant across ability
levels.
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Figure A8: Instrumented Treatment Effects Over Time
Note: This figure shows coefficient estimates and their 95% confidence intervals from a two-stage least
squares regression of productivity outcome variables on the noise level, wage, session, person, and room
fixed effects with standard errors clustered at the room by session level. The noise level is instrumented by
an indicator for being in a treated room. Before estimation, the sample was split into two groups by week.
Treatment effects were estimated separately for the two groups in a stacked regression. The results show
that the treatment effect is relatively constant across weeks.

51



-0.04

-0.08
-0.10

-0.09 -0.05
-0.07

-0.05
-0.08 -0.06 -0.08 -0.06

-0.08

-0.04
-0.07

0.01

-0.05

-0.2

-0.1

0.0

0.1

0.2

Total
Pockets

Total
Points

Meets 1
Criteria

Meets 2
Criteria

Meets 3
Criteria

Meets 4
Criteria

Meets 5
Criteria

Meets 6
Criteria

IHS Transformed Outcome

N
oi

se
 L

ev
el

 C
oe

ffi
ci

en
t

a aHour 1 Hour 2

Figure A9: Instrumented Treatment Effects by Hour of Session
Note: This figure shows coefficient estimates and their 95% confidence intervals from a two-stage least squares
regression of productivity outcome variables on the noise level, wage, session, person, and room fixed effects
with standard errors clustered at the room by session level. The noise level is instrumented by an indicator
for being in a treated room. Before estimation the sample was split into two groups by hour within each
session. Treatment effects were estimated separately for the two groups in a stacked regression. The results
show that the treatment effect is relatively constant across hours.

0.000

0.005

0.010

250 500 750
Income from Session (Ksh)

D
en

si
ty

5 Ksh 10 Ksh 15 Ksh

Figure A10: Income Density by Piece Rate
Note: This figure shows the density of the earned income by piece rate in experiment one. Some subjects
earned substantially more in the 15 Ksh condition which may explain the lack of impact of the piece rate on
productivity.
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Figure A11: Normalized Test Score Variation
Note: This figure shows the density of the normalized scores for each measured outcome in experiment
two. The results show that with the exception of d2, all metrics generate good variation and do not appear
susceptible to ceiling or floor effects.
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Figure A12: Willingness to Pay Overview and Elicitation Procedure
Note: The first panel of this figure shows the overview of the process of eliciting willingness to pay including
when practices were conducted, and how information was timed with the elicitation. The second panel is
a detailed view of how willingness to pay was elicited using a modified version of the procedure outlined in
Berry et al. (2015).
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Figure A13: Comparison of BDM and TIOLI Offers from Berkouwer and Dean (2019)
Note: The figure plots the BDM procedure validation results from Berkouwer and Dean (2019). The authors
use the same BDM elicitation procedure as this paper in a sample of 1000 households from Nairobi. However,
instead of only having a single practice good, the authors randomly assign participants to practice the BDM
for either lotion or soap. For the good not chosen as the practice good, the respondent is given a take it
or leave it (TIOLI) offer at a randomly chosen price. This allows comparison of the demand curves elicited
by the BDM script employed by the authors to those elicited by more traditional purchase decisions. The
results show the BDM gives comparable demand curves.

55



(a) Experiment One

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

0 50 100 150 200
Average Willingness to Pay

P
er

ce
nt

 C
ho

os
in

g

With Flat Rate With Piece Rate

(b) Experiment Two
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Figure A14: Average Willingness to Pay by Compensation
Note: The figure shows the distribution of willingness to pay in order to work in the quiet room by whether the
respondent was facing a piece rate or a flat rate. The first panel shows the results for the first experiment,
while the second shows the results for the second. The results show that willingness to pay for quiet is
generally quite low.
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Figure A15: Productive Value of Quiet
Note: The figure shows the densities of the hierarchical linear models’ predicted income gains from working
in the quiet room. The first panel shows the density from the first experiment and the second shows the
density from the second. The model was used to obtain better predictions of the within-person treatment
effect than would be obtained from simply taking the difference between treatment and control performance
within person.
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(a) Experiment One
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Figure A16: Model Fit
Note: The figure plots the hierarchical linear model’s predictions of the respondents’ output and scores in the
willingness to pay sessions on the x-axis against the respondents’ realized output and scores on the y-axis.
Values are plotted separately depending on whether the individual ended up in quiet or in noise based on
their willingness to pay. The solid line shows the 45 degree line or perfect prediction.

58



(a) Experiment 1

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5
Level of Noise Annoyance

P
er

ce
nt

ag
e 

H
ol

di
ng

 B
el

ie
f

Believe No Difference or Less Productive in Quiet
Believe More Productive in Quiet

(b) Experiment 2
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Figure A17: Beliefs and Annoyance
Note: This figure shows the proportion of individuals who believe they are more productive in quiet for each
level of stated annoyance with the noise level. The high level of correlation provides suggestive evidence that
individuals do not actually understand the impact of noise on their productivity and are instead substituting
in their annoyance level.
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Figure A18: Correlation Between Amenity and Productive Value of Quiet
Note: This figure plots the respondent’s willingness to pay for quiet when facing a flat rate compensation
scheme and what the model predicts is their productive value of quiet. Points are jittered to avoid overplot-
ting. The results show that the two are essentially uncorrelated. This suggests that if respondents neglect
the productive impact and sort simply on annoyance, this will change the composition of workers sorting
into working in noise.
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B Supplementary Tables For Online Publication

Table B1: Sample Summary Statistics

Experiment 1 Experiment 2 Total

Female 0.641 0.521 0.566
(0.482) (0.501) (0.496)

Age 28.84 26.07 27.11
(6.791) (6.748) (6.885)

High School or More 0.516 0.690 0.625
(0.502) (0.464) (0.485)

Typical Daily Wage 677.2 548.6 597.0
(725.8) (633.4) (671.5)

Days Worked Last Week 2.188 1.235 1.592
(2.528) (2.130) (2.330)

More Annoyed by Noise than Others 0.258 0.305 0.287
(0.439) (0.462) (0.453)

Note: This table presents summary statistics for each experiment sample. The main entries are the means
of the variable in each row. Standard deviations are in parentheses below. The samples are relatively similar
on demographic terms.

Table B2: Experiment One Balance

(1) (2) (3) (4) (5) (6)

Female Age
High School

or More
Typical Daily

Wage
Days Worked

Last Week

More Annoyed
by Noise

than Others

Treatment Mean 0.641 28.812 0.518 684.163 2.192 0.257

Control Mean 0.640 28.861 0.513 670.259 2.183 0.259

Two-Sided P-Value 0.962 0.889 0.846 0.673 0.915 0.936
Normalized Difference 0.006 −0.007 0.016 0.021 −0.006 −0.006

Note: This table assesses the balance of sample characteristics between treatment and control sessions.
The first two rows display the average of the variable indicated in the column for individuals observed in
treatment and control sessions, respectively. Row three shows the p-value from a regression of the variable on
a treatment indicator with standard errors clustered at the room by session level. The normalized difference
is the difference between the treatment and control means divided by the square root of the average of the
treatment and control variances as defined by Imbens and Rubin (2015). The sample observed in treatment
and control are almost identical. This is a result of the within-person randomization. The only reason
balance does not hold exactly is due to small levels of attrition.
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Table B3: Experiment One Poisson Regressions

(1) (2) (3) (4) (5) (6) (7) (8)

Total
Pockets

Total
Points
Earned

Pockets
Meeting

1 Criterion

Pockets
Meeting

2 Criteria

Pockets
Meeting

3 Criteria

Pockets
Meeting

4 Criteria

Pockets
Meeting

5 Criteria

Pockets
Meeting

6 Criteria

Marginal Effects

Treatment −0.3094∗∗ −1.7523∗∗ −0.2961∗∗ −0.3124∗∗∗ −0.3496∗∗∗ −0.3392∗∗ −0.3000∗∗ −0.1671
(0.1210) (0.7287) (0.1212) (0.1206) (0.1290) (0.1343) (0.1381) (0.1309)

Poisson Coefficients

Treatment −0.0269∗∗ −0.0284∗∗ −0.0258∗∗ −0.0274∗∗∗ −0.0320∗∗∗ −0.0326∗∗ −0.0306∗∗ −0.0216
(0.0105) (0.0118) (0.0106) (0.0106) (0.0118) (0.0129) (0.0141) (0.0169)

Wage FE Yes Yes Yes Yes Yes Yes Yes Yes
Session FE Yes Yes Yes Yes Yes Yes Yes Yes
Person FE Yes Yes Yes Yes Yes Yes Yes Yes
Room FE Yes Yes Yes Yes Yes Yes Yes Yes

Control Mean 11.527 61.849 11.493 11.421 10.965 10.446 9.832 7.692
Control Median 10 54 10 10 10 9 9 6
Observations 2447 2447 2447 2447 2447 2447 2447 2447

Note: This table shows the marginal effects and coefficients from poisson regressions of productivity outcome
variables on a treatment indicator, wage, session, person, and room fixed effects with standard errors clustered
at the room by session level. Respondents in treated rooms (those working with the background noise of a
vacuum instead of a dishwasher) made approximately 3% fewer pockets.

Table B4: Experiment One Fisher P-Values

Total
Pockets

Total
Points
Earned

Pockets
Meeting

1 Criterion

Pockets
Meeting

2 Criteria

Pockets
Meeting

3 Criteria

Pockets
Meeting

4 Criteria

Pockets
Meeting

5 Criteria

Pockets
Meeting

6 Criteria

IHS Transformed 0.008 0.008 0.013 0.004 0.003 0.006 0.053 0.597
Levels 0.081 0.13 0.098 0.08 0.066 0.081 0.148 0.754

Note: This table shows the p-values from randomization inference. Treatment was randomly reassigned 1000
times using the original randomization code. Each outcome variable was then regressed on the reassigned
treatment indicator, individual, session, room, and wage fixed effects. The true coefficient was then compared
to the distribution of coefficients induced by reassignment in order to generate p-values. The inferences are
similar to those reported in the main regressions.
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Table B5: Intensity Level Balance

Experiment 1 Experiment 2

(1) (2) (3) (4) (5) (6) (7) (8)
Temperature CO2 Humidity Second Half Temperature CO2 Humidity Second Half

Intensity 1 27.17 642.67 39.24 0.50 25.10 894.75 45.87 0.40
(0.67) (44.03) (2.13) (0.11) (0.77) (91.41) (2.05) (0.14)

Intensity 2 25.94 635.52 44.76 0.88 25.19 848.38 45.77 0.25
(0.65) (42.63) (2.06) (0.11) (0.88) (103.64) (2.32) (0.16)

Intensity 3 27.78 636.00 39.05 0.38 22.19 872.54 52.26 0.80
(0.67) (44.03) (2.13) (0.11) (0.77) (91.41) (2.05) (0.14)

Intensity 4 26.51 648.78 41.51 1.00 23.28 853.90 49.24 0.25
(0.70) (45.58) (2.20) (0.12) (0.88) (103.64) (2.32) (0.16)

Intensity 5 26.16 653.34 44.17 0.62 23.54 909.17 48.13 1.00
(0.65) (42.63) (2.06) (0.11) (0.82) (96.95) (2.17) (0.16)

Intensity 6 27.59 624.70 41.68 0.38 24.02 1003.74 50.90 0.60
(0.67) (44.03) (2.13) (0.11) (0.73) (86.72) (1.94) (0.14)

Intensity 7 26.35 565.96 44.00 0.14 23.30 847.84 50.98 0.75
(0.70) (45.58) (2.20) (0.12) (0.82) (96.95) (2.17) (0.16)

Intensity 8 26.96 617.94 42.52 0.75 26.37 897.77 38.83 0.40
(0.70) (45.58) (2.20) (0.11) (0.73) (86.72) (1.94) (0.14)

Intensity 9 26.11 654.69 43.67 0.62 26.74 1033.98 40.79 0.00
(0.65) (42.63) (2.06) (0.11) (0.82) (96.95) (2.17) (0.16)

Intensity 10 25.93 647.63 43.30 0.43 24.75 849.89 47.85 0.50
(0.70) (45.58) (2.20) (0.12) (0.82) (96.95) (2.17) (0.16)

Observations 149 149 149 154 84 84 84 88

Note: This table shows the observable differences in sessions by treatment intensity. The main entries in
each row show the means of the variables listed at the top for sessions of a given decile of intensity. The
standard errors of the means are in parentheses and are clustered at the session level. The results show no
clear relationship between treatment intensity and any observable characteristic.
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Table B6: First Stages

Experiment 1 Experiment 2

(1) (2) (3) (4)
Noise Level Noise Level Noise Level Noise Level

Treatment 0.6745∗∗∗ 0.9403∗∗∗

(0.0247) (0.0368)

Treated with 0.1529∗∗∗ 0.3419∗∗∗

Intensity 1 (0.0294) (0.0363)

Treated with 0.3146∗∗∗ 0.5649∗∗∗

Intensity 2 (0.0057) (0.0102)

Treated with 0.4171∗∗∗ 0.7394∗∗∗

Intensity 3 (0.0113) (0.0150)

Treated with 0.4942∗∗∗ 0.8635∗∗∗

Intensity 4 (0.0041) (0.0127)

Treated with 0.5725∗∗∗ 0.9210∗∗∗

Intensity 5 (0.0067) (0.0075)

Treated with 0.6841∗∗∗ 1.0675∗∗∗

Intensity 6 (0.0071) (0.0087)

Treated with 0.7620∗∗∗ 1.1137∗∗∗

Intensity 7 (0.0056) (0.0052)

Treated with 0.8572∗∗∗ 1.1803∗∗∗

Intensity 8 (0.0117) (0.0077)

Treated with 1.0970∗∗∗ 1.2953∗∗∗

Intensity 9 (0.0194) (0.0239)

Treated with 1.4459∗∗∗ 1.3966∗∗∗

Intensity 10 (0.0460) (0.0091)

F-Statistic 745 6699 651 23347
Observations 2512 2512 762 762

Note: This table reports coefficients of a regression of the noise level on the excluded instruments with
standard errors clustered at the room by session level. Columns 1 and 3 use a single indicator for being in a
treatment session. Columns 2 and 4 use separate indicators for each level of treatment intensity. F-statistics
are for a joint test that the coefficients are zero. The results show that all instruments generate a strong
first stage.
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Table B7: IV Effect of Noise on Productivity – Treatment Intensity Instruments

(1) (2) (3) (4) (5) (6) (7) (8)

Total
Pockets

Total
Points
Earned

Pockets
Meeting

1 Criterion

Pockets
Meeting

2 Criteria

Pockets
Meeting

3 Criteria

Pockets
Meeting

4 Criteria

Pockets
Meeting

5 Criteria

Pockets
Meeting

6 Criteria

Inverse Hyperbolic Sine Transformation

Noise Level −0.0646∗∗∗ −0.0751∗∗∗ −0.0651∗∗∗ −0.0661∗∗∗ −0.0905∗∗∗ −0.0975∗∗∗ −0.0861∗∗∗ −0.0549∗∗

(0.0152) (0.0180) (0.0151) (0.0150) (0.0198) (0.0240) (0.0247) (0.0252)

Levels

Noise Level −0.5253∗∗∗ −2.9572∗∗∗ −0.5192∗∗∗ −0.5187∗∗∗ −0.5466∗∗∗ −0.5671∗∗∗ −0.5205∗∗∗ −0.2851∗

(0.1696) (0.9632) (0.1695) (0.1691) (0.1718) (0.1723) (0.1653) (0.1492)
Wage FE Yes Yes Yes Yes Yes Yes Yes Yes
Session FE Yes Yes Yes Yes Yes Yes Yes Yes
Person FE Yes Yes Yes Yes Yes Yes Yes Yes
Room FE Yes Yes Yes Yes Yes Yes Yes Yes

Control Mean-IHS 2.924 4.487 2.918 2.901 2.775 2.645 2.529 2.163
Control Median-Levels 10 54 10 10 10 9 9 6
Observations 2400 2400 2400 2400 2400 2400 2400 2400

Note: This table shows estimates from two-stage least squares regression of productivity outcome variables
on the noise level, wage, session, person, and room fixed effects with standard errors clustered at the room by
session level. The noise level is instrumented by a set of treatment indicators interacted with the session in
order to capture variation in treatment intensity. The first panel shows the results for the inverse hyperbolic
sine-transformed outcomes, while the second panel shows the results for the untransformed outcomes.

Table B8: Quality Response

(1) (2) (3) (4) (5) (6)
Proportion

Meeting
1 Criterion

Proportion
Meeting

2 Criteria

Proportion
Meeting

3 Criteria

Proportion
Meeting

4 Criteria

Proportion
Meeting

5 Criteria

Proportion
Meeting

6 Criteria

Reduced Form Effect of Treatment

Treatment 0.0000 −0.0025 −0.0113∗ −0.0133∗ −0.0063 0.0054
(0.0019) (0.0035) (0.0058) (0.0073) (0.0075) (0.0074)

2SLS Effect of Noise - Treatment Indicator Instrument

Noise Level −0.0009 −0.0018 −0.0117 −0.0134 −0.0030 0.0131
(0.0024) (0.0047) (0.0079) (0.0101) (0.0105) (0.0107)

2SLS Effect of Noise - Treatment Intensity Instruments

Noise Level −0.0009 0.0002 −0.0137∗ −0.0174∗ −0.0100 0.0022
(0.0021) (0.0044) (0.0078) (0.0097) (0.0104) (0.0099)

Wage FE Yes Yes Yes Yes Yes Yes
Session FE Yes Yes Yes Yes Yes Yes
Person FE Yes Yes Yes Yes Yes Yes
Room FE Yes Yes Yes Yes Yes Yes

Control Mean-IHS 0.995 0.980 0.904 0.833 0.765 0.574
Control Median-Levels 2389 2389 2389 2389 2389 2389

Note: This table shows the impact of treatment on the proportion of pockets meeting or exceeding each
quality threshold. The first panel shows the estimates from a regression of the proportions on a treatment
indicator, wage, session, person, and room fixed effects with standard errors clustered at the room by session
level. The second panel shows the estimates from a two-stage least squares regression of the proportions
on the noise level, wage, session, person, and room fixed effects with standard errors clustered at the room
by session level and the noise level instrumented with a treatment indicator. The third panel shows the
estimates from a two-stage least squares regression of the proportions on the noise level, wage, session,
person, and room fixed effects with standard errors clustered at the room by session level and the noise level
instrumented by a set of treatment intensity indicators in order to capture variation in treatment intensity.
The results show that there does not appear to have been a quality response to treatment.
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Table B9: Comparison with Other Environmental Effects

Source Setting Stimulus Stimulus Change Productivity Effect

This Paper Textile Production Noise Perceived Doubling 5%

Adhvaryu et al. (2016) Textile Production Temperature 0.81σ 1.3%

Zivin and Neidell (2012) Agricultural Labor Ozone Pollution 0.76σ 5.5%

Chang et al. (2016) Call Center Air Pollution 15% 0.35%

Chang et al. (2016) Factory Air Pollution 1σ 8%

He et al. (2019) Manufacturing Air Pollution 0.2σ 0%

Note: This table compares the effects of noise on productivity estimated in this experiment with the effects
of other environmental factors on productivity estimated in the literature. While we should be cautious
in interpreting results from different experiments with different kinds of environmental changes on different
types of tasks, it appears the effects estimated in this paper are similarly sized to other environmental factors.

Table B10: Lagged Treatment Results

(1) (2) (3) (4) (5) (6) (7) (8)

Total
Pockets

Total
Points
Earned

Pockets
Meeting

1 Criterion

Pockets
Meeting

2 Criteria

Pockets
Meeting

3 Criteria

Pockets
Meeting

4 Criteria

Pockets
Meeting

5 Criteria

Pockets
Meeting

6 Criteria

Treatment −0.0163 −0.0305 −0.0168 −0.0302∗ −0.0649∗∗∗ −0.0554∗ −0.0289 0.0011
(0.0172) (0.0208) (0.0171) (0.0159) (0.0221) (0.0282) (0.0284) (0.0291)

Lagged Treatment 0.0000 −0.0198 −0.0043 −0.0125 −0.0406 −0.0077 0.0149 0.0194
(0.0213) (0.0250) (0.0214) (0.0201) (0.0291) (0.0384) (0.0390) (0.0428)

Treatment × −0.0504 −0.0356 −0.0515 −0.0344 0.0101 −0.0033 −0.0297 −0.0023
Lagged Treatment (0.0354) (0.0473) (0.0366) (0.0353) (0.0447) (0.0571) (0.0598) (0.0637)

Wage FE Yes Yes Yes Yes Yes Yes Yes Yes

Session FE Yes Yes Yes Yes Yes Yes Yes Yes

Person FE Yes Yes Yes Yes Yes Yes Yes Yes

Room FE Yes Yes Yes Yes Yes Yes Yes Yes

Control Mean-IHS 2.924 4.487 2.918 2.901 2.775 2.645 2.529 2.163
Observations 2209 2209 2209 2209 2209 2209 2209 2209

Note: This table shows estimates from an ordinary least squares regression of the inverse hyperbolic sine-
transformed productivity outcome variables on a treatment indicator, a lagged treatment indicator, an
interaction of the treatment indicator and the lagged treatment indicator, wage, session, person, and room
fixed effects with standard errors clustered at the room by session level. The results are imprecise, but do
not suggest that cumulative effects of noise exposure are important.
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Table B11: Decision Task Results

(1) (2) (3)

Net Savings Bought Bulk
Worked

Extra Hour

Treated 1st Session 0.3483 0.0358 −0.0241
(39.9039) (0.0723) (0.0942)

Treated 2nd Session 20.1870 −0.0504 0.0457
(41.6946) (0.0715) (0.0945)

Treated 3rd Session 10.7555 −0.0782 0.0013
(33.9952) (0.0717) (0.0930)

Day FE Yes No No

Person FE Yes No No

Outcome Mean 8.204 0.190 0.525
Outcome SD 694.611 0.394 0.501
Observations 733 126 120

Note: This table shows regressions of the outcome variables from three decision tasks conducted at the end
of selected days on indicators for whether the respondent was treated in the first, second, or third session
on those days. Standard errors are clustered at the individual level. The first column shows the net amount
saved (deposits less withdrawals) by respondents in an account with an interest rate of 1% per working day.
The second column shows whether an individual chose to buy a 5 kg bag of maize flour when they had the
opportunity to buy five 1 kg bags of flour at a lower cost. The final column shows whether the respondents
elected to stay for an extra hour and work for a piece rate when offered the chance. All results show that
noise exposure during the day does not seem to affect decisions taken later in quiet.

Table B12: Effect of Piece Rate on Productivity

(1) (2) (3) (4) (5) (6) (7) (8)

Total
Pockets

Total
Points
Earned

Pockets
Meeting

1 Criterion

Pockets
Meeting

2 Criteria

Pockets
Meeting

3 Criteria

Pockets
Meeting

4 Criteria

Pockets
Meeting

5 Criteria

Pockets
Meeting

6 Criteria

Inverse Hyperbolic Sine Transformation

10 Ksh Piece Rate 0.0270∗ 0.0336 0.0245 0.0267 0.0238 0.0290 0.0513∗ 0.0407
(0.0158) (0.0207) (0.0162) (0.0171) (0.0233) (0.0283) (0.0299) (0.0329)

15 Ksh Piece Rate −0.0180 −0.0239 −0.0223 −0.0104 −0.0040 −0.0028 −0.0139 −0.0120
(0.0166) (0.0233) (0.0173) (0.0179) (0.0250) (0.0296) (0.0310) (0.0341)

Levels

10 Ksh Piece Rate 0.3352∗ 1.8285∗ 0.3199∗ 0.3328∗ 0.2738 0.2986 0.3547∗ 0.2487
(0.1719) (1.0068) (0.1722) (0.1711) (0.1745) (0.1824) (0.1824) (0.1847)

15 Ksh Piece Rate 0.1153 0.9158 0.1101 0.1588 0.1494 0.2219 0.1552 0.1204
(0.1746) (1.0350) (0.1754) (0.1747) (0.1806) (0.1877) (0.1882) (0.1908)

Noise Condition Yes Yes Yes Yes Yes Yes Yes Yes
Session FE Yes Yes Yes Yes Yes Yes Yes Yes
Person FE Yes Yes Yes Yes Yes Yes Yes Yes
Room FE Yes Yes Yes Yes Yes Yes Yes Yes

5 Ksh Mean-IHS 2.898 4.450 2.894 2.869 2.728 2.590 2.476 2.129
5 Ksh Median-Levels 10 51 10 10 9 9 8 6
Observations 2447 2447 2447 2447 2447 2447 2447 2447

Note: This table shows ordinary least squares regressions of inverse hyperbolic sine-transformed and un-
transformed productivity outcome variables on piece rate indicators, treatment indicators, session, person,
and room fixed effects with robust standard errors. The results demonstrate that increasing the piece rate
from 5 to 10 Ksh increased productivity by approximately 3%, but that there was no effect of the 15 Ksh
piece rate condition, possibly due to income effects.
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Table B13: Effect of Piece Rate on Productivity in Quiet

(1) (2) (3) (4) (5) (6) (7) (8)

Total
Pockets

Total
Points
Earned

Pockets
Meeting

1 Criterion

Pockets
Meeting

2 Criteria

Pockets
Meeting

3 Criteria

Pockets
Meeting

4 Criteria

Pockets
Meeting

5 Criteria

Pockets
Meeting

6 Criteria

Inverse Hyperbolic Sine Transformation

10 Ksh Piece Rate 0.0450∗ 0.0477 0.0420∗ 0.0431∗ 0.0411 0.0656 0.0789∗ 0.0321
(0.0244) (0.0326) (0.0244) (0.0257) (0.0372) (0.0442) (0.0465) (0.0516)

15 Ksh Piece Rate 0.0018 0.0217 −0.0009 0.0168 0.0518 0.0734∗ 0.0603 0.0260
(0.0236) (0.0328) (0.0239) (0.0249) (0.0351) (0.0427) (0.0450) (0.0519)

Levels

10 Ksh Piece Rate 0.6416∗∗ 3.4733∗∗ 0.6282∗∗ 0.6485∗∗∗ 0.5432∗∗ 0.6733∗∗ 0.6315∗∗ 0.3486
(0.2491) (1.4802) (0.2492) (0.2487) (0.2570) (0.2683) (0.2676) (0.2824)

15 Ksh Piece Rate 0.2405 1.7745 0.2367 0.2959 0.3472 0.4769∗ 0.3095 0.1084
(0.2595) (1.5464) (0.2607) (0.2603) (0.2671) (0.2766) (0.2772) (0.2947)

Session FE Yes Yes Yes Yes Yes Yes Yes Yes
Person FE Yes Yes Yes Yes Yes Yes Yes Yes
Room FE Yes Yes Yes Yes Yes Yes Yes Yes

5 Ksh Mean-IHS 2.858 4.389 2.853 2.827 2.671 2.512 2.386 2.043
5 Ksh Median-Levels 9 48 9 9 9 8 7 5
Observations 1223 1223 1223 1223 1223 1223 1223 1223

Note: This table shows ordinary least squares regressions of inverse hyperbolic sine-transformed and untrans-
formed productivity outcome variables on piece rate indicators for observations in quiet, session, person, and
room fixed effects with robust standard errors.

Table B14: Effect of Piece Rate on Productivity in Noise

(1) (2) (3) (4) (5) (6) (7) (8)

Total
Pockets

Total
Points
Earned

Pockets
Meeting

1 Criterion

Pockets
Meeting

2 Criteria

Pockets
Meeting

3 Criteria

Pockets
Meeting

4 Criteria

Pockets
Meeting

5 Criteria

Pockets
Meeting

6 Criteria

Inverse Hyperbolic Sine Transformation

10 Ksh Piece Rate 0.0086 0.0183 0.0078 0.0175 0.0122 −0.0049 0.0202 0.0490
(0.0228) (0.0298) (0.0234) (0.0255) (0.0335) (0.0408) (0.0434) (0.0467)

15 Ksh Piece Rate −0.0286 −0.0809∗∗ −0.0389 −0.0274 −0.0707∗ −0.0973∗∗ −0.1168∗∗ −0.0659
(0.0255) (0.0378) (0.0278) (0.0285) (0.0382) (0.0447) (0.0462) (0.0493)

Levels

10 Ksh Piece Rate 0.1556 1.0339 0.1456 0.1742 0.1438 0.0747 0.2250 0.2706
(0.2560) (1.5083) (0.2568) (0.2546) (0.2580) (0.2718) (0.2738) (0.2788)

15 Ksh Piece Rate 0.2124 1.1508 0.1956 0.2465 0.1209 0.1393 0.1549 0.2936
(0.2581) (1.5210) (0.2600) (0.2581) (0.2661) (0.2793) (0.2796) (0.2695)

Session FE Yes Yes Yes Yes Yes Yes Yes Yes
Person FE Yes Yes Yes Yes Yes Yes Yes Yes
Room FE Yes Yes Yes Yes Yes Yes Yes Yes

5 Ksh Mean-IHS 2.937 4.508 2.934 2.908 2.781 2.664 2.560 2.209
5 Ksh Median-Levels 10 54 10 10 10 10 9 6
Observations 1224 1224 1224 1224 1224 1224 1224 1224

Note: This table shows ordinary least squares regressions of inverse hyperbolic sine-transformed and untrans-
formed productivity outcome variables on piece rate indicators for observations in noise, session, person, and
room fixed effects with robust standard errors.
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Table B15: Measures of Cognitive Function

Domain Task name Ability task measures Why ability is needed to sew

Attention Psychomotor Vigilance Ability to sustain focus To avoid sewing off the edge or go-
ing past where the turn is supposed
to be

d2 Ability to ignore distractions To focus on task while other things
are going on around you

Working Memory Reverse Corsi Block Ability to store and manipulate in-
formation in your mind

To be able to keep in mind how el-
ements will ultimately fit together

N-Back Ability to continuously update in-
formation

To be able to keep track of where
you are in the task

Inhibitory Control Hearts and Flowers Ability to resist tempting impulses To maintain control of sewing speed
when surprised by something

Cognitive Flexibility Wisconsin Card Sort Ability to maintain multiple rules
in memory and select which is most
appropriate

To be able to switch from one el-
ement of the task to another (e.g.
hemming to sewing the sides)

Higher-Level Reasoning Raven’s Ability to recognize patterns and
extrapolate

To identify potentially better meth-
ods for accomplishing the task

Note: This table contains descriptions of the cognitive tests used in the second experiment. The first column
shows the domain of cognitive function that the test is designed to assess. The second column shows the
name of each test. The third column shows the specific cognitive ability the test is designed to assess. The
final column shows how this ability is potentially important in sewing.

Table B16: Experiment Two Balance and Summary Stats

(1) (2) (3) (4) (5) (6)

Female Age
High School

or More
Typical Daily

Wage
Days Worked

Last Week

More Annoyed
by Noise

than Others

Treatment Mean 0.523 25.846 0.696 528.916 1.208 0.296

Control Mean 0.509 25.940 0.706 550.188 1.203 0.302

Two-Sided P-Value 0.716 0.868 0.768 0.670 0.973 0.852
Normalized Difference 0.028 −0.014 −0.021 −0.033 0.003 −0.014

Note: This table assesses balance of sample characteristics between treatment and control sessions. The first
two rows display the average of the variable indicated in the column for individuals observed in treatment
and control sessions, respectively. Row three shows the p-value from a regression of the variable on a
treatment indicator with standard errors clustered at the room by session level. The normalized difference
is the difference between the treatment and control means divided by the square root of the average of the
treatment and control variances as defined by Imbens and Rubin (2015). The results show that those observed
in treatment and control are well balanced on observable characteristics. This is due to the within-person
design. The only lack of perfect balance comes from a small amount of attrition.
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Table B17: Experiment Two Reduced-Form Effect of Treatment

Cognitive Function Tests Placebo Effort Task

(1) (2) (3) (4) (5) (6)

Normalized
Sum of Scores

Average of
Normalized Scores

PCA of
Percent Correct

and Reaction Time

CFA of
Percentage Correct
and Reaction Time

Key Presses Normalized Score

Treatment −0.0304∗∗ −0.0239∗∗ −0.0589∗∗∗ −0.0635∗∗∗ 1.8234 0.0039
(0.0128) (0.0092) (0.0165) (0.0194) (19.0984) (0.0408)

Wage FE Yes Yes Yes Yes Yes Yes
Session FE Yes Yes Yes Yes Yes Yes
Person FE Yes Yes Yes Yes Yes Yes
Room FE Yes Yes Yes Yes Yes Yes

Observations 762 762 762 762 762 762

Note: This table shows estimates from an ordinary least squares regression of cognitive outcome variables
on an indicator for treatment, wage, session, person, and room fixed effects with standard errors clustered
at the room by session level. The first outcome is the normalized sum of points that participants earned
on tests during a session. The second column normalizes first at the test-score level and averages across
normalized scores within a session. The third outcome is the first component of a principal component
analysis of percentage correct and reaction time estimated on each individual’s first control session. The
fourth column is my preferred outcome: the first factor of a common factor analysis of percentage correct
and reaction time estimated on each individual’s first control session. The last two columns show that there
was no effect of the same noise change on the placebo effort task.

Table B18: Experiment Two IV Effect of Noise – Treatment Intensity Instruments

Cognitive Function Tests Placebo Effort Task

(1) (2) (3) (4) (5) (6)

Normalized
Sum of Scores

Average of
Normalized Scores

PCA of
Percent Correct

and Reaction Time

CFA of
Percentage Correct
and Reaction Time

Key Presses Normalized Score

Noise Level −0.0233∗∗ −0.0168∗∗ −0.0478∗∗∗ −0.0529∗∗∗ −2.8033 −0.0060
(0.0110) (0.0082) (0.0154) (0.0182) (15.8894) (0.0339)

Wage FE Yes Yes Yes Yes Yes Yes
Session FE Yes Yes Yes Yes Yes Yes
Person FE Yes Yes Yes Yes Yes Yes
Room FE Yes Yes Yes Yes Yes Yes

Observations 762 762 762 762 762 762

Note: This table shows estimates from a two-stage least squares regression of cognitive outcome variables on
the noise level, wage, session, person, and room fixed effects with standard errors clustered at the room by
session level. The noise level is instrumented by a set of treatment intensity indicators. The first outcome
is the normalized sum of points that participants earned on tests during a session. The second column
normalizes first at the test-score level and averages across normalized scores within a session. The third
outcome is the first component of a principal component analysis of percentage correct and reaction time
estimated on each individual’s first control session. The fourth column is my preferred outcome: the first
factor of a common factor analysis of percentage correct and reaction time estimated on each individual’s
first control session. The last two columns show that there was no effect of the same noise change on the
placebo effort task.
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Table B19: Experiment Two Fisher P-Values

Normalized
Sum of Scores

Average of
Normalized Scores

PCA of
Percentage Correct
and Reaction Time

CFA of
Percentage Correct
and Reaction Time

Key Presses Normalized Score

0.165 0.115 0.022 0.035 0.906 0.906

Table B20: Impacts of Noise on Normalized Scores by Metric

Attention Working Memory
Inhibitory
Control

Cognitive
Flexibility

Higher
Reasoning

(1) (2) (3) (4) (5) (6) (7)

PVT D2 Corsi NBack
Hearts and

Flowers
Wisconsin Ravens

Noise Level −0.0210 −0.0011 −0.0308 −0.0253 −0.0380 −0.0509∗ −0.0106
(0.0266) (0.0192) (0.0303) (0.0193) (0.0232) (0.0266) (0.0204)

Wage FE Yes Yes Yes Yes Yes Yes Yes
Session FE Yes Yes Yes Yes Yes Yes Yes
Person FE Yes Yes Yes Yes Yes Yes Yes
Room FE Yes Yes Yes Yes Yes Yes Yes

Observations 762 762 762 762 762 762 762

Note: This table shows estimates from a two-stage least squares regression of the normalized score on each
test on the noise level, wage, session, person, and room fixed effects with standard errors clustered at the
room by session level. The noise level is instrumented by an indicator for being in a treated room. The
results show that the effects of noise do not appear to be concentrated in any particular domain.

Table B21: Effects of Beliefs in Experiment One

(1) (2) (3)
WTP WTP Any WTP COP

Piece Rate −0.2584 0.0169 −1.5658
(1.5306) (0.0203) (2.5481)

Believe More 6.2208 0.2614∗∗∗ −3.0795
Productive in Quiet (5.7762) (0.0760) (7.9450)

Believe More 2.6918 −0.0669 7.1020
Productive × Piece Rate (3.8755) (0.0480) (5.4276)

Day FE Yes Yes Yes

Outcome Mean 17.697 0.538 32.906
Observations 476 476 256

Note: This table shows the results of a regression of willingness to pay and an indicator for being willing to
pay a positive amount on an indicator for whether an individual was facing a piece rate, whether they stated
they were more productive in quiet and their interaction. Because willingness to pay was elicited over two
days in experiment one, day fixed effects are also included. Standard errors are clustered at the individual
level. The results are consistent with the more detailed belief data from experiment two.
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C Cognitive Task Descriptions For Publication on the

Author’s Website

This appendix describes how the cognitive tasks were implemented and scored. All tasks

were programmed on the python-based, open-source platform OpenSesame developed by

Mathôt et al. (2012). During each trial session, respondents were seated at a desk and

worked autonomously for approximately two hours. Tasks were presented in a random

order on Windows touch-screen tablets with external keyboards attached at a resolution of

1280x768. During practice sessions, participants were instructed on the rules of each task,

shown demonstrations, and given the opportunity to ask clarifying questions.

C.1 Attention

C.1.1 Psychomotor Vigilance

The Psychomotor Vigilance Task is implemented following Basner and Dinges (2011). Re-

spondents stare at a blank white screen while resting a finger on the spacebar. At random

intervals between 2 and 10 seconds, a red counter appears (see Figure C19). When the

counter appears, the respondent’s job is to tap the spacebar as quickly as possible. In each

session respondents completed 100 trials scored as follows:

• Pressing the spacebar while no counter is present results in an incorrect response, the

screen flashes “FALSE START” and earns zero points.

• Responses faster than 100 ms are considered as anticipatory responses, counted as

incorrect, and earn zero points.

• Responses slower than 500 ms are considered attentional lapses, counted as incorrect,

and earn zero points.

• Following Basner and Dinges (2011), for each correct response participants earn points

depending on their inverse response time according to the following scoring rule: 5000×
Inverse RT− 10.

The total score is then the average of the trial scores. For consistency with the other tests,

in the common factor and principal component analyses response times are used rather than

inverse response times.
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Figure C19: PVT Stimulus
Note: The figure shows a snapshot of a counter that appears in the PVT test displaying a time of 320 ms.
The test is designed to assess attention. When the counter appears, respondents must press the space bar
to stop it from counting up. The faster they press the space bar, the more points they earn.
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Figure C20: d2 Stimuli
Note: The figure shows an example of a trial from the d2 test. The test is designed to assess attention.
Respondents see a series of d’s and p’s with up to two lines below and above. They must tap the boxes
below all d’s with a total of two dashes before the trial ends.

C.1.2 d2

The d2 task follows the general instructions outlined in Brickenkamp and Zillmer (1998) and

Bates and Lemay Jr. (2004), but is modified for computer presentation. For each trial, eleven

letters (either p or d) appear on the screen with between zero and two dashes above and zero

and two dashes below for a total number of dashes between zero and four (see Figure C20).

The respondent’s job is to mark all of the d’s with a total of two dashes by tapping the box

below the letter. After 5106 ms, the trial ends. Until that time has elapsed, respondents

can un-mark and re-mark letters as they please. Another set of eleven letters appears after

500 ms. Respondents complete 100 trials. For every d with two dashes correctly marked,

respondents earn one point. Respondents lose one point for marking anything else. Their

score is total number of points earned divided by number of possible points.

C.2 Working Memory

C.2.1 Reverse Corsi Block

Implementation of the Reverse Corsi Block task follows Brunetti et al. (2014). For each trial,

nine blue blocks appear in random locations on the screen. They take turns lighting up for

500 ms with 1000 ms between each flash. Respondents are then asked to tap the blocks

in reverse order of how they lit up (see Figure C21). For each element in the sequence,

if the respondent taps on the correct block, it turns green for 500 ms and the respondent

can proceed to tap the next block in the sequence. If the respondent taps any other block,

it flashes red and the respondent moves to the next trial. The first trial sequence contains
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two elements. For each sequence the respondent gets completely correct, the sequence length

increases by one. For every sequence incorrect, the length decreases by one up to a minimum

sequence length of two. Respondents complete 50 trials. The score is the average length of

the sequences that respondents complete.

(a) Blocks appear in random positions (b) Blocks light up yellow randomly

(c) Respondents tap blocks in reverse order

Figure C21: Corsi Stimuli
Note: This figure shows the three stages of the reverse corsi blocks test. The test is designed to measure
working memory. First nine blocks appear in random positions. They then light up in a random sequence.
Respondents must then tap the blocks in the reverse order of how they lit up. After each correct trial, the
length of the sequence increases by one, and after every incorrect trial, the length of the sequence decreases
by one down to a minimum of two elements.

C.2.2 N-Back

Implementation of the N-Back task follows Wilhelm et al. (2013) with an “N” of two. For each

trial, respondents see a sequence of twelve animal pictures. For each picture following the

second, the respondents are required to tap either “MATCH” or “NO MATCH” depending

on whether the image currently on screen matches the image shown two animals ago (see

Figure C22). Each image is presented with a 2500 ms maximum response time and a 500 ms

interstimulus interval. Each sequence is randomly determined by randomly drawing elements

from a pool of ten images such that for each trial there is a 50% chance of the draw being
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a match. At the start of every session, respondents complete one practice trial sequence

and then another 40 scored sequences. A respondent’s score is the percentage of responses

correctly marked times 10.

C.3 Inhibitory Control

C.3.1 Hearts and Flowers

Implementation of the Hearts and Flowers task follows the “dots” task outlined by Davidson

et al. (2006). Respondents see a fixation dot in the center of their screen with blue boxes

on the left and right. Respondents then see a sequence of hearts and flowers appear on the

boxes. For each trial, respondents must press either the “Q” or “P” key. When a heart

appears, respondents must press the key on the same side as the heart. While when a flower

appears, respondents must press the key on the opposite side (see Figure C23). During each

session respondents complete the following:

1. 6 practice trials with only hearts.

2. 126 scored trials with only hearts.

3. 6 practice trials with only flowers.

4. 126 scored trials with only flowers.

5. 492 scored trials with both hearts and flowers.

Each stimulus times out after 750 ms and there is a 500 ms interstimulus interval. Trials are

scored as follows:

• Responses faster than 100 ms are scored as incorrect, anticipatory responses and earn

zero points.

• Trials where the incorrect key or no key is pressed are scored as incorrect and earn

zero points.

• For each trial with a correct response, respondents earn points according to the follow-

ing scoring rule that is linear in their response time: 10× RT− 750

200− 750
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(a) First element (b) Second element

(c) Third element does not match first (d) Fourth element does not match second

(e) Fifth element does not match third (f) Sixth element does match fourth

Figure C22: N-Back Stimuli and Responses
Note: This figure shows an example of six elements from an N-back sequence. The test is designed to
assess working memory. Respondents see a series of animals and must indicate whether the animal currently
displayed matches the animal seen two elements previously.
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(a) Press ‘Q’ Key (b) Press ‘P’ Key

(c) Press ‘Q’ key (d) Press ‘P’ key

Figure C23: Hearts and Flowers Possible Stimuli and Responses
Note: The figure shows the four possible stimuli and responses for the hearts and flowers test. The test is
designed to assess inhibitory control. Respondents see a series of hearts and flowers appear on the blocks.
When a flower appears, the respondent must press the key on the opposite side of the keyboard. When a
heart appears, the respondent must press the key on the same side of the keyboard.
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C.4 Cognitive Flexibility

C.4.1 Wisconsin Card Sort

The Wisconsin Card Sort task follows the procedure originally outlined by Grant and Berg

(1946) as modified for computer display by PsyToolkit (Stoet 2010, 2017). The respondent

sees four response cards at the top of the screen and one question card (see Figure C24).

Their job is to tap the response card that “matches” the question card. There are three

possible matching rules:

1. Shape – In the example, the correct answer would be the fourth response card (four

gold stars).

2. Color – In the example, the correct answer would be the third response card (three

blue crosses).

3. Number – In the example, the correct answer would be the second response card (two

green triangles).

Every ten trials a sorting rule is chosen at random. Respondents must figure out the sorting

rule through trial and error. If the respondent taps the correct response card, the screen

flashes “Correct!”. If the response card they tap is incorrect, the screen flashes “Wrong!”.

Respondents complete 100 trials. Every incorrect trial earns zero points. Every correct

trial is scored according to the following scoring rule linear in reaction time35: 10 + 200 ×
10

30000− 200
− RT× 10

30000− 200
.

C.5 Higher-Level Reasoning

C.5.1 Raven’s

The Raven’s task follows the classic task described by Raven (2000) with supplemental ma-

trices graciously provided by Heather Schofield based on Schofield (2014). Respondents see

a matrix with a missing piece and a set of possible pieces (see Figure C25), and their job

is to tap the piece that completes the pattern in the matrix. In each session, respondents

completed ten original Raven’s progressive matrices alternating with ten supplemental ma-

trices increasing in difficulty. For each incorrect response, respondents earned zero points.

35Note that it is not traditional to score reaction time on this task because the task is typically presented
with physical cards by an enumerator. I took advantage of the computer-based administration to collect
reaction time and improve the measure’s sensitivity.
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(a) Question (b) If correct

(c) If incorrect

Figure C24: Wisconsin Stimuli
Note: The figure shows the three key screens from the Wisconsin card sort test. The test is designed to
assess cognitive flexibility. Respondents are shown a card at the bottom of the screen and are asked to
choose which of four cards at the top of the screen it matches according to one of three possible sorting rules.
Respondents are not told which of the rules is being used and must figure it out by trial and error. Every
ten trials the sorting rule changes.
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Figure C25: Raven’s Stimulus
Note: This figure shows an example of a trial from the Raven’s matrices test. The test is designed to assess
higher-reasoning skills. The respondent sees a pattern of shapes with one missing. They must choose which
of the possible answers completes the pattern.

For each correct response, respondents earned points in a scoring rule linear in their reaction

time36: 10.0 + 200× 10

60000− 200.0
− RT× 10

60000− 200
.

C.6 Effort

C.6.1 Effort Task

The effort task is implemented following DellaVigna and Pope (2018). Respondents have 10

minutes to alternate pressing the ‘a’ and ‘b’ keys. For each complete alternation, a progress

bar on the screen increases by one hash mark. At increments of 50, the bar resets and

respondents are reminded of their total score (see Figure C26). Respondents earn one point

for every 300 alternations.

36Reaction time is not traditionally collected on this test; however, I decided to take advantage of computer-
based implementation and maximize the sensitivity of the test.
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(a) Press ‘a’ and ‘b’ until progress bar fills (b) See total score every 50 presses

Figure C26: Effort Stimuli
Note: The figure shows the two key screens from the effort task. The respondent must alternate pressing the
‘a’ and ‘b’ keys. As they do, a progress bar (shown on the left) begins to fill up. After every 50 completed
alternations the respondent sees his/her score (shown on the right), and the progress bar resets to zero.

D Willingness to Pay Script For Online Publication

“I’m sure you’ve noticed these two weeks that sometimes a noisy engine is outside of the

rooms. For each of the first two practice sessions tomorrow, we are going to give you the

chance to pay in order to work in a room without the engine outside. However, the price for

working in the quieter room has not yet been decided. It will be determined for each session

by a game of chance. You will not have to pay anything more than you want to, and you

might even get it for less! Here’s how this will work:

For each session, you and I will figure out the highest price that you are willing to pay

to work in the quieter room. Then tonight our computer will randomly decide the price. If

the price is higher than you said you are willing to pay, when you come tomorrow you will

be in the room with the engine outside. If the price is lower than what you said you were

willing to pay, the randomly chosen price will be deducted from your pay for that session,

and you will work in the quieter room.

Since this is complicated, we will first make a plan for which prices you would like to

pay to work in the quieter room. I will ask you whether you would be willing to pay several

prices in order to be in the quieter room and you will tell me yes or no. After we are done,

you will not be able to change your plan. Do you understand?”
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